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ABSTRACT 

Wild pigs (Sus scrofa) are one of the most-wide spread terrestrial mammals on the planet 

and have costly impacts to both natural and managed environments. They were listed as one of 

the top 100 worldôs worst invasive species and have caused precipitous population declines and 

extinctions of some of the most critically endangered species on the planet. Their ability to 

function as both a top predator and destructive herbivore has made them a particularly serious 

threat throughout island ecosystems where species are not evolutionarily adapted to defend 

against such behaviors. In continental ecosystems, they have been shown to fundamentally alter 

predator-prey dynamics, compete with native fauna, and cause billions of dollars of 

environmental damage. Given the extensive body of literature documenting these various threats 

there remain large gaps in our basic understanding of pig ecology and the extent at which they 

threaten biodiversity. To address these knowledge gaps, this thesis quantified the extent of wild 

pig threats to 59,590 terrestrial taxa using the largest species data base available: The 

International Union for the Conservation of Natureôs Red List. This thesis also analyzed the 

spatial ecology of feral pigs on Maui over the spring and fall of 2018 using species distribution 

models. Results from this thesis indicate that wild pigs threaten 672 taxa world-wide, with plant 

taxa and herpetofauna (amphibians and reptiles) particularly at risk. Wild pigs threaten nearly as 

many taxa as domestic dogs and feral cats, who are often regarded by the conservation 

community as the most problematic invasive species to biodiversity. On Maui, the spatial 

ecology of feral pigs appeared heavily driven by both temporally variable environmental 

conditions and differences in hunting pressure. Between the spring and fall of 2018 feral pigs 

significantly shifted from mixed alien forests into sensitive native mesic shrublands. 

Management efforts to reduce the significant shift of pig abundance into these sensitive native 

ecosystems are of the utmost concern.  
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CHAPTER 1 

Introduction  

Wild pigs (Sus scrofa) are one of the most problematic terrestrial mammals throughout 

both their introduced and native range. Intentionally introduced by humans for food 

provisioning, game recreation, and illegal stocking by hunters, S. scrofa now occupy six 

continents, making them one of the most widely spread terrestrial mammals (Barrios-Garcia and 

Ballari, 2012). S. scrofa are capable of disturbing ecosystems through a suite of mechanisms that 

influence both top-down and bottom-up regulatory pressures, including: the depredation of 

herpetofauna in Alabama and Georgia (Jolley et al., 2010), disturbing predator-prey dynamics in 

the Channel Islands (Roemer et al., 2001), altering soil conditions in Hawaiói (Long et al., 2017; 

Wehr, 2018), and decreasing plant species richness in Australia (Hone, 2002). Wild pigs cause 

billions of dollars a year in damages in the United States alone and the geographic distribution of 

pig populations is expected to expand with changes in climate (McClure et al., 2015; Pimental, 

2007).  

To address the magnitude of impacts to the environment from wild pigs and their 

expanding geographic distribution, the National Wild Pig Task Force (NWPTF) set forth 

research priorities to address knowledge gaps in wild pig biology and ecology, economic and 

ecological effects, control strategies, and education and human dimensions (Beasley et al., 2018). 

Chapters 2 and 3 of this thesis aim to address some of the most pressing research priorities as set 

forth by the NWPTF to better understand the extent of wild pig impacts to biodiversity and their 

basic ecological requirements.  
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 Chapter 2 of this thesis aims to quantify the global ecological effects of wild pigs on 

biodiviersity. The NWPTF explicitly call for a better understanding of the impacts of wild pigs 

on natural environments, as these are much less understood and studied than their impacts on 

managed ecosystems (e.g., agriculture) (Beasley et al., 2018). This study aims to address that 

knowledge gap and is the first to quantify the extent of wild pig impact based on all their known 

mechanisms of disturbance throughout their native and introduced range. This global quantitative 

study helps identify both taxonomic groups and regions most threatened by wild pigs, thereby 

directing conservation and management attention to vulnerable taxa and regions.  

 Chapter 3 of this thesis addresses the basic spatiotemporal ecology of feral pigs on the 

second largest Hawaiian Island. It is important to note here that wild populations of pigs in 

Hawaiᾶi are referred to as feral due to their genealogy indicating the Hawaiian breed to be a 

genetic hybrid of domestic, feral, and wild populations of swine (Cheong H. Diong, 1982; Wehr 

et al., 2018). Although both feral and wild pigs are classified as the same species (Sus scrofa), 

Chapter 3 of this thesis refers to Hawaiian populations of pigs as feral while Chapter 2 generally 

refers to wild pigs throughout their native and introduced range (treating feral pigs as introduced 

populations of wild pigs). Overall, very little is known about which biotic or abiotic factors drive 

feral pig densities in Hawaiᾶi, and even less is known about how temporal fluctuations in those 

factors influence their distribution. The island of Maui provides an ideal system for studying the 

distribution of feral pigs because of the diverse array of habitat types, relatively small size when 

compared to continental systems, and well-established feral pig populations. Through spatial 

modeling techniques, this study identifies primary drivers of feral pig distribution between two 

contrasting seasons and quantifies the change in feral pig distribution. On a more basic level, this 

study provides reproducible, cost-effective methods for quantifying feral pig abundances that are 
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explicitly called for by the NWPTF. The results from this study have broad-reaching applications 

particularly for management agencies in Hawaiói, where an understanding of feral pig 

distribution may mitigate potential conflict between conservation and game management 

objectives.  
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CHAPTER 2  

Quantifying the impact of wild  pigs on global biodiversity 

Abstract 

Humans have facilitated the spread of species outside of their native ranges into regions 

where they did not historically occur, leading to significant impacts to native biodiversity on a 

global scale. The modes of distribution and establishment of exotic and invasive species are well 

studied and documented, but the degree of impact of invasive species on biodiversity is difficult 

to enumerate. The IUCN Red List is a comprehensive list of over 105,700 species and is a 

powerful tool to quantify the threat of problematic species. In this chapter, I aim to quantify the 

impacts of a globally distributed invasive species, wild pig (Sus scrofa), that is known to modify 

ecosystems through predation, disturbance and degradation of habitat, disease risk, competition, 

and hybridization. In total, 672 taxa were recognized as threatened by wild pigs throughout 54 

different countries. Out of the 672 taxa, 414 were either endangered or critically endangered 

species and 14 species listed Sus scrofa as a major contributing factor to their extinction. 

Additionally, island ecosystems were found to be more vulnerable to threats from Sus scrofa, a 

phenomenon particularly driven by species of concern on islands throughout Polynesia, 

Micronesia, and Melanesia. Wild pigs ranked among some of the most problematic invasive 

predators such as feral cats and domestic dogs. Threatened species were distributed across 

taxonomic groups indicating pervasive ecosystem level threats, however, island plants and 

herpetofauna were among the most threatened taxa.
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Introduction  

Wild pigs (Sus scrofa) originate from Eurasia and were first domesticated around 9000 

years ago (Larson et al., 2005). Since domestication, humans have brought pigs to nearly every 

corner of the globe where feral populations have quickly established. Their utility as a food 

provisioning resource has made pigs one of the most widely distributed mammals in the world 

and inevitably led them to regions previously unexposed to large terrestrial omnivores (Massei 

and Genov, 2004). Most commonly island ecosystems, these unexposed regions are particularly 

vulnerable to the presence of invasive species due to native and endemic species lacking 

appropriate evolutionary and behavioral traits (Banks and Dickman, 2007; Gibbons et al., 2000; 

Parker et al., 2006).  

Pigs were listed in ñ100 of the Worldôs Worst Invasive Alien Speciesò solidifying their 

spot amongst other more frequently discussed invasive terrestrial species such as feral cats (Felis 

catus) and rats (Rattus rattus) (Lowe et al., 2000). Pigs are unique among other problematic 

terrestrial invasive species; in that they are omnivorous generalists and function as both large 

predators and herbivores throughout their native and introduced range (Barrios-Garcia and 

Ballari, 2012). They have been documented predating upon a variety of vertebrate and 

invertebrate species throughout island and continental ecosystems (Challies, 1975; Coblentz and 

Baber, 1987; Jolley et al., 2010), disturbing nest sites and plant assemblages (Cole and Litton, 

2014; MacFarland et al., 1974), hybridizing with other endangered Suidae (Semiadi and 

Meijaard, 2006), competing with native fauna (Desbiez et al., 2009; Focardi et al., 2000), and as 

vectors for disease transmission (Barrios-Garcia and Ballari, 2012; Gortázar et al., 2007; Spear 

and Chown, 2009). In addition to their direct impacts on both wildlife and plant communities, 

they are generally known to disturb ecosystem structure due to their unique rooting and digging 
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behavior (Mitchell et al., 2008). Consequentially, pigs are considered ecosystem engineers, 

having considerable secondary effects on organisms by physically altering habitat characteristics 

(Barrios-Garcia and Ballari, 2012). To accurately address the extent of pig threats to biodiversity 

these various threatening mechanisms (predation, herbivory, and ecosystem engineering) must be 

incorporated in any comprehensive threat assessment. 

Although global summaries of pig impacts do exist they have either been global 

qualitative papers drawing implications from many small-scale quantitative studies (Ballari and 

Barrios Garc²a, 2014; Barrios-Garcia and Ballari, 2012; Massei and Genov, 2004; Nuñez et al., 

2010; Spear and Chown, 2009) or have been large-scale quantitative studies addressing a specific 

mechanism through which pigs threaten the environment (Bracke, 2011; Doherty et al., 2016) or 

their impacts on a particular ecosystem type (Campbell and Long, 2009). Global qualitative 

review papers are critical in identifying the mechanisms and effects pigs have on ecosystems yet 

are insufficient in quantifying the extent of these impacts to species and environments outside of 

the areas from which the data is drawn. Furthermore, large-scale quantitative papers are rare and 

typically focus on one aspect of species impact (predation, herbivory, or ecosystem engineering). 

As a result, a comprehensive global quantitative assessment including all mechanisms through 

which pigs threaten biodiversity is nonexistent.  

In this chapter, I quantify the extent of pig threats to both plant and wildlife including all 

mechanisms by which pigs threaten these taxa and all potentially threatened taxa. Using this 

information, I enumerate how many species are threatened by pigs and which taxonomic groups 

are most vulnerable. I also identify which threatening mechanisms are most prevalent and which 

regions globally can be considered hotspots in terms of pig threats. 
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Methods 

A complete copy of the IUCN Red List for all terrestrial vertebrates was acquired in June 

2018 (n=67,246 taxa). Data deficient taxa were excluded from this database due to uncertainties 

surrounding their assessment accuracy. The refined database (n=59,590 taxa) was then filtered 

using a systemic search in R (R Core Team, 2013) to identify keywords from the ñMajor 

Threatsò section for each species that contained any of the following keywords: pig, pig*, pigs, 

domesticus, Sus, scrofa, boar, boar*, boars, hog, hog*, hogs, swine. This list of keywords was 

compiled based on commonly used names to describe pigs in management literature. This script 

flagged a total of 815 taxa for manual review. I did not include threats associated with 

domesticated pigs, however, domestic pigs described as ñfree-rangingò were treated as wild. 

Similarly, some species were not threatened by pigs directly, but instead by human hunting 

practices catalyzed by the presence of pigs. These threats were noted but not included in the 

analysis. False positives were flagged and removed from the pig threatened species subset.  

The ñMajor Threatsò section was then manually read and cross referenced for a final set 

of 672 taxa. To ascertain the threat level from wild pigs to these taxa I used a similar approach to 

previous studies and categorized threat level as ñmajorò, ñminorò, or ñpotentialò based on 

information provided in the ñMajor Threatsò section and the taxaôs current threat status (Doherty 

et al., 2016; Jones et al., 2008; Medina et al., 2011). I chose to include ñpotentialò instead of 

ñmixedò like many other studies due to uncertainty surrounding some of the threat text 

associated with the threatened taxa. Threats from wild pigs were sometimes inferred by the 

listingôs author based on overlapping distribution of the threatened species with wild pigs but 

evidence of direct impact was sometimes missing. In these cases, threats from wild pigs were 

categorized as ñpotentialò. When threats were associated with extinct or critically endangered 
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taxa, text alluding to any threat from wild pigs were considered ñmajorò. Threats to least concern 

taxa were considered by default to be minor as were secondary threats to near-threatened taxa 

unless otherwise specified. For each taxon threatened by pigs, I categorized threat as one or more 

of the following categories: ñpredationò, ñdisturbanceò, ñdisease riskò, ñcompetitionò, and 

ñhybridizationò. Unless otherwise specified, consumption of plants by wild pigs was considered 

both ñpredationò and ñdisturbanceò. Similarly, digging up of nests of herpetofauna and ground 

nesting birds was counted as both ñdisturbanceò and ñpredationò.  

Range information obtained from the IUCN Red List was categorized into 18 different 

sub-regions (Fig. 2.1). These sub-regions were additionally classified as either island or 

continental based on their geographic location for a comparative threat analysis. Since IUCN 

Red List range data is classified by country, many endemic species occurring on islands were 

cross listed as occurring on both the country which governs the island and the island on which 

they were present (n0 = 3017). These cross-listings would have overinflated the threats occurring 

in continental regions. Using the built-in filter functions in Microsoft Excel and more detailed 

range information from the ñRange Descriptionò text from the IUCN Red List, each of the 3017 

taxa were manually filtered by reading each taxaôs range information and repeat records of 

endemic species outside of their range were removed (n1 = 2496).  

Results 

Global threat from wild pigs on biodiversity 

Wild pigs were documented as a threat to 672 species from 54 different countries. Of 

these, 267 taxa were classified as critically endangered, 147 taxa were endangered, and 14 

extinct taxa had classified pigs as a major contributing factor to their decline (Fig. 2.2 & Fig. 
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2.4). Disturbance of habitat threatened 594 taxa making it the most frequently cited threat type, 

followed by 486 taxa threatened by predation with all other threat types affecting less than 20 

taxa (Fig. 2.3). Of the 672 taxa threatened by pigs, 345 were plants (59 families), 123 

herpetofauna (25 families), 96 birds (38 families), 84 invertebrates (22 families), and 24 

mammals (11 families) (Fig. 2.2). In total, 59% of threatened taxa faced major threats, 21% 

faced minor threats, and 20% were potentially threatened by wild pigs (Fig. 2.4). Nearly a third 

(30%) of all threatened taxa facing major threats were distributed amongst three plant families 

(56 Campanulaceae, 26 Asteraceae, and 21 Arecaeae) and one reptile family (24 Scincidae).  

3.2. Continental vs. Island Regions 

Wild pigs in island regions generally have stronger negative impacts on biodiversity 

when compared to continental regions (Fig. 2.5). Plants and herpetofauna were the most 

threatened island taxa while birds and herpetofauna were the most threatened continental taxa 

(Fig. 2.5).  Collectively, the Micronesian/Melanesian region had the highest severity of assessed 

taxa threatened by wild pigs including 19% of all invertebrates (64 taxa), 13% of herpetofauna 

(67 taxa), 4% of plants (59 taxa), and 2% of all birds (25 taxa). The Polynesian islands were the 

next most threatened island region with 31% of plants (248 taxa) threatened, 14% of 

herpetofauna (5 taxa), and 9% of birds (31 taxa). Notably, 18% (9 taxa) of all assessed 

herpetofauna in the Galapagos were threatened by wild pigs with over half of them belonging to 

the Testudinidae family. For continental regions, North America faced the highest threat rates 

from wild pigs with 1% of all birds (11 taxa), 0.9% of reptiles (5 taxa), and 0.5% of mammals (2 

taxa).  
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Fig. 2.1. Number of taxa threatened by wild pigs for each of the 18 subregions. Percent of all 

assessed taxa threatened are given in parenthesis. Antarctica was the only subregion without wild 

pig presence therefore (%) not given. 

 

Table 2.1. List of species with wild pigs classified as a major contributing factor to their 

extinction. 

Common Name Species Name Region 

- Melicope nealae Hawai'i 

KauaΨi flatsedge Cyperus rockii Hawai'i 

- Cyanea sessilifolia Hawai'i 

Tristan moorhen Gallinula nesiotis Saint Helena 

South Island snipe Coenocorypha iredalei New Zealand 

Kauaᾶi ᾶǾᾶǾ Moho braccatus Hawai'i 

Hawaiian Greensword Argyroxiphium virescens Hawai'i 

- Hibiscadelphus woodii Hawai'i 

- Delissea niihauensis Hawai'i 

- Melicope macropus Hawai'i 

Mt. Kaala cyanea Cyanea superba ssp. regina Hawai'i 
Mount Glorious day 
frog Taudactylus diurnus Australia 

- Chilonopsis nonpareil Saint Helena 

- 
Tetramolopium consanguineum subsp. 
consanguineum Hawai'i 
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Fig 2.2. Wild pig threats to each taxonomic group categorized by their Red List Category.  

 

 



 

12 

 

 

Fig 2.3. Frequency of wild pig threat types to all IUCN assessed species as described in the 

ñMajor Threatsò category. 
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Fig 2.4. Severity of threats to taxa based on their Red List Category with percentage (%) of total 

species listed labeled on top of bars. 
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Fig 2.5. Number of species threatened by wild pigs on continental and island ecosystems with 

proportion of species (%) displayed above columns. 
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Discussion 

This study is the first comprehensive analysis to quantify the threat to global biodiversity 

from wild pigs in both continental and island ecosystems. This assessment indicates that wild 

pigs are non-discriminant generalists, threatening 672 taxa globally, and have contributed to the 

extinctions of 14 taxa. I also reiterate that over half (n= 414 taxa) all taxa threatened are listed as 

either critically endangered or endangered and are of the greatest conservation concern. The 

estimates from this assessment are likely conservative due to the exclusion of data deficient 

species in the analysis and known biases associated with threat reporting and species assessments 

(Bland et al., 2015; Böhm et al., 2013; Keith et al., 2015). Furthermore, wild pigs have highly 

destructive behaviors that cause cascading trophic effects which broadly impact ecosystems, yet 

these threats are not easily quantified and most likely are largely excluded from species 

assessments (Barrios-Garcia and Ballari, 2012; Massei and Genov, 2004; Roemer et al., 2001). 

Although excluded from this analysis, I also found frequent mention of bycatch by hunters 

alluding to further impact associated with the presence of wild pigs.  

Impacts to islands from wild pigs are particularly acute, especially in the Polynesian 

region. This result is overwhelmingly driven by taxa in the Hawaiian Islands; with 92% of all 

taxa threatened by pigs in this region occurring on the Hawaiian Islands. This is likely due to 

data deficiencies in species assessments on smaller developing island countries throughout 

Polynesia (Brummitt et al., 2015). Studies have found that these data deficient species are 

typically of high conservation concern and our results may imply that threats to taxa throughout 

these data deficient areas of Polynesia may be comparable to those faced by taxa in the Hawaiian 

Islands due to similarities in ecosystem structure (Bland et al., 2015; Joppa et al., 2011). Thus, 
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the threats to the broader Polynesian region as well as other data deficient regions around the 

world may be considerably greater than indicated.  

Proportionately, island plants and herpetofauna are the most threatened species. 

Herpetofauna are threatened by both direct predation and disturbance to nest sites. Herpetofauna 

in the Galapagos and Micronesian/Melanesian region were found to suffer higher threat rates 

than elsewhere (18% and 13% respectively). For island regions with insufficient species 

assessments, this is particularly important as herpetofauna present there may be more threatened 

by wild pigs than indicated by this assessment. More comprehensive species assessments and 

research attention to island herpetofauna is needed as they are one of the most data deficient 

taxonomic groups on the Red List (Bland and Böhm, 2016; Jones et al., 2016; Stuart et al., 

2004). Generally, plants had the highest number of taxa threatened by pigs, with this result 

driven by species in Polynesia (n = 248 taxa) or Micronesia/Melanesia (n = 58 taxa). Island 

native and endemic plants are most likely threatened in these regions due to the absence of 

analogous terrestrial mammalian omnivores throughout their evolutionary history (Denslow, 

2003). As a result, many island plant species lack the evolutionary traits and behaviors that can 

protect them against omnivorous ungulates (Desurmont et al., 2011; Parker et al., 2006). The 

same is likely true for island herpetofauna, leaving them naïve to threats from wild pigs (Banks 

and Dickman, 2007; Courchamp et al., 2003; Cox and Lima, 2006).   

This analysis suggests nearly five times more taxa are threatened by wild pigs than an 

IUCN meta-analysis conducted by Doherty et al. (2016). Incorporating both plants and 

amphibians which were excluded from Doherty et al. (2016) and rank among the highest 

threatened taxa, is crucial in identifying the true extent of wild pig impact to biodiversity due to 

their non-discriminant nature. The keyword search in this assessment also included a wider range 
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of search terms due to preliminary research and consultation with IUCN indicating a wide range 

of terms used to describe Sus scrofa. Even so, the list of species impacted by pigs is likely an 

underestimate, as plants, invertebrates and herpetofauna are often data deficient, or have not been 

assessed by the Red list (Bland and Böhm, 2016; Howard and Bickford, 2014). Additionally, 

pigs have often been present in many island ecosystem (where they have the greatest impact) for 

a longer period than other predators (e.g. cats or dogs) meaning that historical declines caused by 

the introduction of pigs may be poorly documented. 

The threats from wild pigs rank among many of the most problematic invasive predators 

that have undergone similar analyses (Doherty et al., 2016, 2017; Medina et al., 2011). Many of 

these assessments exclude threats to terrestrial invertebrates and plants as well as any threats to 

species of least concern or near threatened status. If both these criteria were excluded from our 

assessment wild pigs still threaten 183 taxa globally (80 birds, 15 mammals, 88 reptiles) ranking 

them among some of the worldôs top invasive predators such as domestic dogs (Doherty et al., 

2017). Also, threats to island regions from wild pigs rank closely to feral cats (Felis catus), 

which are often regarded as the most detrimental invasive predator to island ecosystems 

(Nogales et al., 2013). Medina et al. (2011) identified 175 taxa threated by feral cats on islands, 

while our assessment indicates wild pigs threaten at least 147 taxa using the same criteria. Given 

the role of wild pigs as both a top predator and destructive herbivore, their additional threats to 

plant and invertebrate taxa make them a serious cause for concern and indicate major ecosystem 

level impacts (Simberloff, 2011). Furthermore, wild pigs not only threaten a comparable number 

of taxa as other invasive predators, they impact taxonomic groups that are often minimally 

threatened by other invasive species, such as herpetofauna and plants (Bellard C. et al., 2016). 
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Given these extensive threats, there are multiple ways to effectively manage for pig 

threats on both island and continental systems. In many cases, wild pigs are an abatable threat, 

with available management actions like exclusion fencing, baiting, trapping, and eradication on 

smaller islands or from protected areas (Courchamp et al., 2003). Island regions, which are most 

threatened by the presence of wild pigs, have benefited from successful eradication campaigns 

and the subsequent recovery of native species across taxonomic groups are indicative of major 

ecosystem level impacts associated with their presence (Brooke et al., 2007). Eradication efforts 

have even been successful for larger islands (>100km2) where threatened endemic species are 

beginning to recover (Coblentz and Baber, 1987; Cruz et al., 2005; Ramsey et al., 2009). 

Although quantitative information on native species recovery after eradication is uncommon, 

Donlan et al. (2007) found considerable increases in the density of the endemic Galapagos rail 

(Laterallus spilonotus) after goat and pig eradication. Where eradication is not feasible (densely 

populated islands or continental regions), other adaptive management approaches in the form of 

targeted control efforts (Gürtler et al., 2017; Weeks and Packard, 2009) and protected refuges 

using exclusion fencing have helped alleviate pig pressures on vulnerable taxa (Cole and Litton, 

2014; Lavelle et al., 2011). However, given these management options the amount of 

conservation effort dedicated toward wild pig management on islands is disproportionate to the 

threats they face as evidenced by this assessment (Jones et al., 2016). Few islands include 

comprehensive pig management for the purposes of conservation and only 69 islands have been 

eradicated of wild pigs (DIISE, 2018). In comparison, 148 islands have been successfully 

eradicated of cats (Felis catus) and 195 have been eradicated of feral goats (Capra hircus) 

(DIISE, 2018). This assessment suggests that pig control efforts on island ecosystems would 

have the greatest benefit to biodiversity, particularly throughout Polynesia, Micronesia, and 
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Melanesia. Additionally, special concern should be placed on islands with a diverse presence of 

herpetofauna or native plant species due to their vulnerability. Finally, more research attention 

should be focused on island herpetofauna as they are typically data deficient and threats to these 

taxa are likely far greater than indicated by this assessment.  
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CHAPTER 3 

Spatiotemporal ecology of feral pigs on Maui, Hawaiói 

Abstract 

Species distribution models (SDM) are commonly used in resource planning to prioritize 

management decisions but temporal variation is often excluded from the modeling process. As a 

result, few studies appropriately incorporate the influence of temporal variation on species 

distribution, potentially biasing management recommendations based on SDM outputs. In this 

chapter, I aimed to address how temporal variation in environmental and human-mediated 

conditions might affect the modeling of the distribution of a large omnivorous ungulate on the 

second largest main Hawaiian Island. Abundance data obtained from remote camera traps and 

systematic disturbance surveys were rigorously collected over the fall and spring periods of 

2018, providing high resolution species data to be used as inputs for an SDM. Using multiple 

modeling methods and quantitative analysis on model outputs I found significant variation 

between models of feral pig distribution produced from these two seasons of data collection. 

Furthermore, I found that foraging behavior likely shifted between the fall and spring. Feral pigs 

appeared to prefer mixed alien forests from March to May of 2018 (spring) but shifted to open 

native mesic shrublands from October to December 2018 (fall). Finally, I found that mixed alien 

forests in Hawaiói host abundant feral pig populations, compared to other habitat types and 

islands, and more management attention should be placed on these areas as they may play a 

critical role in increasing feral pig disturbance on surrounding sensitive native ecosystems.   
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Introduction  

Species distribution modeling (SDM) is an increasingly common approach to addressing 

complicated conservation and game management issues that deal with a spatially heterogenous 

species (Froese et al., 2017; McClure et al., 2015). By modeling the distribution of that species, 

management agencies are then able to prioritize management decisions based on the species 

distribution and abundance. For conservation agencies, modeling the distribution of an invasive 

species enables them to identify hotspot biodiversity areas that might be most threatened by that 

invasive species (Tulloch et al., 2015). For game management agencies, an SDM of a valuable 

game mammal allows managers to prioritize which areas might be most productive for hunting. 

By selectively identifying areas with low native biodiversity but high non-native game mammal 

abundance, managers may achieve game management objectives while minimizing conflict with 

conservation management objectives.  

However, SDM is complicated by the influence of seasonal variation in both 

environmental and human mediated conditions that alter the spatial ecology of the species of 

interest. Feral pigs commonly change their spatial ecology and foraging behavior in the 

continental United States and Europe in response to seasonal variations in climate (Amendolia et 

al., 2019; McClure et al., 2015; Morelle and Lejeune, 2015). The ability to adapt to fluctuating 

conditions by shifting their distribution seasonally complicates the SDM approach by 

introducing a temporal component into a spatially explicit model. Furthermore, human mediated 

interactions with feral pigs, such as hunters or hikers, have significant effects on habitat selection 

(Merli et al., 2017; Mysterud and Østbye, 1999). Variation in the frequency and quantity of 

hikers and hunters in an area throughout the year will likely influence the distribution of feral 

pigs. The influence of these temporally variable factors on the spatial ecology of feral pigs are 
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rarely studied but are essential to understanding where pigs are moving throughout the year and 

which conditions are primary drivers of that movement (Beasley et al., 2018). To appropriately 

align management actions with conservation and game management objectives, a basic 

understanding of temporal differences in feral pig distribution is essential.  

The island of Maui, Hawaiói provides an ideal system for studying the spatiotemporal 

ecology of feral pigs. Feral pig populations have been established on Maui for atleast several 

hundred years meaning they have likely realized their available niche space (Cheong H. Diong, 

1982). The island of Maui has a diverse array of habitat types present in both island and 

continental systems, making comprehensive field studies feasible and results potentially 

applicable to continental systems. Environmental conditions are spatially and temporally variable 

with a distinct wet and dry season. Finally, applications of species distribution modeling for two 

objectives, conservation and game management, are relevant in Hawaiói as feral pigs are 

managed as both a destructive invasive pest and an important cultural and recreational resource. 

Maui therefore provides an opportunity to test the effects of seasonal changes in environmental 

conditions on feral pig spatial ecology and allows for the subsequent application of species 

distribution modeling results in both a conservation and game management context.  

This chapter aims to compare the spatial ecology of feral pigs between two contrasting 

seasons, spring 2018 and fall 2018, on Maui, Hawaiói and identify primary drivers influencing 

the potential change in distribution using the most common approaches to species distribution 

modeling. I hypothesized that seasonality would significantly affect the distribution of feral pigs 

due to changes in the frequency and quantity of rainfall, changes in temperature, and differences 

in hunting pressure. During the drier spring season, I expected that pig distribution would be 

constrained to areas that provided cover from hunting pressure and sources of food during 
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months of lower rainfall. During the wetter fall season, I hypothesized that pigs would be less 

reliant upon these forested areas that provide cover and the closure of many hunting units would 

alter feral pig foraging behavior and habitat selection. I expected this change in foraging 

behavior to result in a significant shift in feral pig distribution between seasons. 

 

Fig. 3.1. Hunting units across the island of Maui denoted by the type of unit and existing 

ungulate fences represented by hatched lines. Deer and feral pigs are eligible for take from all 

hunting units. Goats are eligible for take from units A, B, C, and D while hunting units E and F 

are exclusively for feral pigs and deer. Units A, B, D, and E are open to feral pig hunting year-

round. Unit C is open to feral pig hunting from February through June and Unit F is open to feral 

pig hunting from February through October.  
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Site Description  

The island of Maui is the second largest Hawaiian Island and has a land area of 1883 km2 

(Fig. 3.1). There are two main mountain ranges, the West Maui mountains with elevations up to 

1,764 m and East Maui mountains (HaleakalǕ) with elevations up to 3,055 m. The East Maui 

mountains were created through volcanic activity that began around 840,000 years ago and 

remained active until as recently as 1790 (Sinton, 1979). East Maui is a shield volcano 

characterized by its gradual sprawling slopes due to limited exposure to erosion in geologic time. 

The West Maui mountains were created through several volcanic series that began at least 1.2 

million years ago and subsided around 500,000 years ago (Sinton, 1979). In contrast to East 

Maui, West Maui has been exposed to erosive weathering for nearly 400,000 years longer, 

resulting in steep topography that is generally inaccessible by foot. Long-term mean annual 

rainfall varies greatly across the island from 250 mm to over 10,000 mm (Giambelluca et al., 

2012). The north-eastern face of HaleakalǕ receives the greatest amount of rainfall due to the 

predominant northeasterly trade winds.  

Public hunting areas comprise nearly 15% of Mauiôs land area (275 km2) with various 

restrictions on hunting seasons, daily bag limits, and sex of species eligible for take. Ungulate 

fencing is the most common approach for minimizing impacts from invasive ungulates to native 

species and ecosystems on the island of Maui and across most of the state of Hawaiói. There are 

231 km of existing ungulate fences on Maui and they are present in both mountain ranges. 

However, due to differences in terrain, approaches to ungulate fencing differ between East and 

West Maui. West Maui ungulate fences are strategically constructed to prevent movement of 

ungulates through critical corridors, with cliff areas unfenced, effectively preventing ungulates 
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from accessing higher elevations. Ungulate fences on East Maui are designed with a single 

continuous fence encompassing the East Maui mountains.  

Hunting seasons generally play an important role in the distribution of game species and 

the accessibility of optimal foraging habitat (Stankowich, 2008). As such, it is important to 

consider not only the landscape of biotic and abiotic variables but also the landscape of human 

interaction with the environment, most notably the presence or absence of hunting pressure. 

During spring 2018, all hunting units were open for game mammals with limited hunting access 

during fall (Fig 3.1) 

Methods 

Seasonal conditions: 

Long-term average climate data were obtained from the rainfall atlas of Hawaióiôs 

website and were used as expected climatic conditions for each season of data collection. These 

long-term averages were then cross-referenced with observed data from local weather stations to 

characterize 2018 field conditions. Observed weather station data were obtained from Remote 

Automated Weather Stations (RAWS) and the National Oceanic and Atmospheric 

Administrationôs (NOAA) National Weather Service. Weather station locations included 

Kahului, Kula, and KeǕlia National Wildlife Refuge. 

 

Site selection: 

Potential survey sites were located by rasterizing the island of Maui into 500 by 500 

meter (25 ha) units using R packages raster (Hijmans et al., 2017) and rgdal (Bivand et al., 
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2018). Sites were located at the centroid of each raster cell. The raster was masked to land 

recognized as a forest reserve using the Hawaiᾶi state government reserve outline (State of 

Hawaiói 2016) and privately held land with pre-established access permission. For this reason, 

extensive areas of fallow agricultural land and urban areas were not sampled. Additionally, all 

land within ungulate exclusion fences was excluded from the random site selection process, since 

ungulates have been excluded and eradicated from these locations. To ensure sampling across 

altitudinally stratified environmental gradients which commonly occur in the Hawaiian Islands, 

potential survey areas were divided equally into three altitudinal bands (0-1000 m, 1000-2000 m 

and >2000 m) to prevent disproportionate sampling of the more frequent, low altitude raster 

cells. An equal number (n=15 per band) of survey sites was randomly drawn from these three 

altitudinal bands. Randomly stratified sites were generated for both the spring and fall seasons of 

data collection. The vegetation, slope, and topography of Hawaiian habitats make it difficult to 

both access sites and deploy camera traps. When a randomly selected site could not be reached 

due to topography, the site was moved to the closest analogous location within 500m that could 

be safely accessed, or else was excluded from the study. Sites requiring helicopter were accessed 

via the nearest accessible landing zone (LZ). If sites could not be reached via LZ, camera traps 

and surveys were deployed in a rectangular array on an azimuth towards the site location no 

greater than 500 m from the site location.  
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Fig. 3.2. Map of Maui, Hawaiói showing site locations for both spring and fall data collection 

where camera traps were deployed, and disturbance surveys were conducted. 

Survey design: 

At each site an array of six cameras was installed (Bushnell Trophy Cams) distributed at 

regular 50 m intervals (Bushnell Trophy Cams, Bushnell, Overland Park, KS). Cameras were 

programmed to take two consecutive images for each trigger and reset after three seconds. Sites 

were deployed for a two-week period under one of two configurations depending on terrain: (i) a 

rectangular array, with cameras deployed in two parallel lines of three; and (ii) a linear array, 

with all six cameras deployed along a transect. Linear arrays were deployed only in areas where 

topography did not allow for a rectangular array, such as on ridge crests with steep receding 

slopes on either side. Cameras were deployed in a manner that maximized the probability of 
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detection, such as focused in a clearing, trail or area with obvious previous pig activity within a 

10 m radius of randomly pre-selected GPS co-ordinates. Cameras were attached to vegetation at 

approximately waist height and angled on a level to slightly downward facing trajectory with the 

ground. Camera data were reviewed manually using Irfanview (version 4.53) so that photos 

containing images of feral pigs were filtered into a database for analysis (Ġkiljan, 2019). After 

filtering, the mean count of camera-captured observations of feral pigs per site was calculated 

and used as one form of count data for model building. 

At each camera location, signs of pig disturbance were recorded in four 10 by 10 m 

quadrats over a standardized two-minute search period for each quadrat. For linear arrays on 

steep slopes, quadrats were positioned along a line transect, while in rectangular arrays quadrats 

were in a square configuration. In each quadrat the presence or absence of old and new signs of 

tracks, scat, digging and vegetation damage were recorded. New sign was defined as having 

likely occurred no later than two weeks prior, based on leaf fall on top of sign, desiccation of 

soil, layered disturbances, or other visual cues of time since the sign was produced. Disturbance 

surveys were conducted both upon the deployment and recovery of cameras from each site. 

Disturbance survey data was collated into a .csv file and the frequency of each type of sign 

recorded (tracks, scat, dig, etc.) was averaged for each site location to calculate the average of 

each type of recorded sign per site. The sum of the averages of each type of recorded sign per 

site (all sign) was then used as the second form of abundance data for model building.  

Predictor variables:  

Environmental and human-related predictor variables were chosen based on the expected 

ecological requirements of feral pigs and the influence of human interactions on feral pigs. In 

total, eight variables were chosen as predictors used in the modeling process: vegetation density, 
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vegetation height, mean annual rainfall, elevation, native vegetative cover, distance to ungulate 

fences, distance to hiking trails, and distance to forest. I used data obtained from the State of 

Hawaióiôs Office of Planning, United States Geological Survey (USGS) Gap Analysis Project 

(GAP), the Rainfall Atlas of Hawaiói, and other layers provided by the Department of Land and 

Natural Resourceôs (DLNR) Division of Forestry and Wildlife (DOFAW) (Gergely and 

McKerrow, 2013; Giambelluca et al., 2012). Distance and density-related variables were 

manually generated from existing base features: USGS GAP Land Cover (30 m x 30 m), 

ungulate fence lines (DOFAW), and Na Ala Hele trail system (DLNR). These base features were 

used to generate the following variables as predictors: distance to forest (mesic and wet), native 

vegetative cover, distance to ungulate fence, and distance to trails. To generate distance-related 

variables, base features were rasterized from their original resolution to 500 m2 and resampled 

using the method ñmajorityò (Morelle and Lejeune, 2015). Distance-related variables were then 

created from these 500 m2 raster layers using the Euclidean distance tool in ArcGIS. The 

distance to forest predictor layer was generated using only mesic and wet forests as the base 

USGS GAP Land Cover layer was unreliable in distinguishing between dry forests and sparse 

dry shrubland. Density-related variables (ñnative coverò) were created by masking USGS GAP 

Land Cover data to any vegetative cover classified as ñnativeò and resampling the base feature 

(30 m2) to 500 m2 using the method ñbilinearò to calculate a density-related output (Hijmans et 

al., 2017). The vegetation height layer obtained from USGS GAP inadequately classified 

buildings in urban areas as tall vegetation which required reclassifying values associated with 

urban areas to 0 using the raster package in R (Hijmans et al., 2017). All predictor layers used in 

the analysis were standardized at 500 m2 resolution as this was determined to be a good estimate 

of the mean home range size for feral pigs in Hawaiói and would allow each survey site to be 
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spatially independent. Collinearity between predictors was considered using pairwise Pearson 

coefficients (R2) and any predictors with R2 greater than 0.75 were excluded (Dormann et al., 

2013; Elith et al., 2010).  

Model development and validation: 

Distribution models for both seasons were developed using the two most common forms 

of abundance data for pigs: (i) mean counts of camera-captured observations and (ii) sum of 

recorded sign. These two data sources were used as the response variable for a stepwise model 

fitting process. During this process, data were fitted to several types of regressive models with 

varying distributions to address model overfitting and issues associated with over or under 

dispersion (Hoef and Boveng, 2007). Dispersion can be defined as more variance than might be 

expected based on mean-variance scaling and is often present in abundnace data due to inherent 

heterogeneity of biological data (White and Bennetts, 1996). It is imperative to test for this 

additional variance as it can bias the mean values and standard errors of parameter estimates 

(Hilbe, 2011). To account for dispersion, different types of models can be fitted, in this case a 

generalized linear model (GLM) or a zero-inflated model. Additionally, these models can be 

fitted to different distribution types (Poisson or negative binomial) or additional predictor 

variables can be included to explain the unexpected variance. Abundance data were fitted to 

Poisson and negative binomial distributed GLMs from the óstatsô and óMASSô (Venables and 

Ripley, 2002) packages in R (Poisson or NB) and zero-inflated mixture models (ZIP or ZINB)  

from the ópsclô package (Zeileis et al., 2008) to account for issues with over or under dispersed 

data (Hijmans et al., 2017; R Core Team, 2019). Poisson and negative binomial distributions 

were chosen as biological count data most often best fit these distributions (Dénes et al., 2015; 

Lyashevska et al., 2016; Oppel et al., 2012; Wenger and Freeman, 2008; White and Bennetts, 
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1996). Zero-inflated models were included in the model fitting process as they provide a means 

of partitioning the model into two parts (zero component and count component) which help 

explain dispersion caused by false-negative counts (Dénes et al., 2015).  

Predictor variable sets were constructed based on a priori hypothesis of response-

predictor relationship and were fitted to models with increasing complexity (GLM to zero-

inflated) until dispersion was appropriately accounted for and model overfitting was not present. 

Model predictions and outputs were visually assessed for any indication of predictor overfitting 

(Elith et al., 2010). Examples of overfitting include predictor distribution outputs mirroring the 

distribution and frequency of predictor variables. Predictor sets were constructed to consider first 

and second order relationships of predictor variables and interactions between predictors. The 

same predictor variable sets were used to identify best fit models for both spring and fall. Best-fit 

models were chosen based on Akaike Information Criteria (AIC) and the ratio of the sum of the 

squared Pearsonôs residuals henceforth referred to as the dispersion parameter (Anderson et al., 

1994; Cox, 2018; Zuur et al., 2009). The dispersion parameter (•) is calculated using equation 1 

where • values equal to one indicate no dispersion and values greater or less than one indicate 

over and under dispersion respectively (Zuur et al., 2009, pg. 226). Models with a dispersion 

parameter exceeding 1.5 were considered over dispersed and those with much <1.0 were 

considered under dispersed. These models were either corrected for dispersion by fitting 

different distributions (Poisson or negative binomial) or model types (GLM or zero-inflated) or 

else excluded from the model selection process. In total, over 20 predictor variable sets were 

constructed that underwent the model fitting process to identify best-fit models for both spring 

and fall datasets.  
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                                                                        (1) 

Seasonal distribution 

Only models using mean counts from camera-captured observations were used to 

quantify the effect of season on feral pig distribution due to the longevity of observable sign 

spanning greater than the season period. To identify the effect of season on the distribution of 

feral pigs on Maui the coefficients and significance of predictor variables were compared. 

Quantifying the significance and effect of predictor variables help identify which predictor 

variables are primary drivers of feral pig distribution between each season and their relationship 

(positive vs. negative). Best-fit models were then used in a predictive model framework to 

estimate expected feral pig abundances across the island of Maui for each 500 m2 raster cell to 

produce seasonal distribution maps. These maps were then qualitatively and quantitatively 

compared. To quantitatively test for seasonal changes in habitat selection, distribution maps were 

standardized using the maximum abundance estimates between the two seasons to calculate a 

relative abundance index on a scale from 0 to 1. These standardized distribution maps were then 

subset into nine different habitat types as defined by the USGS GAP Land Cover dataset. 

Analysis of variance tests (ANOVA) were performed comparing spring and fall relative 

abundances within each of the habitat types to test for changes in habitat selection. P-values from 

ANOVA tests were adjusted using the Bonferroni correction factor to account for the number of 

habitat types tested (Bland and Altman, 1995).  

Results 

Seasonal conditions: 
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Spring (March 8th to June 5th, 2018) long-term mean monthly temperatures range from a 

low of 5°C in March to a low of 7.4°C in May. Mean monthly high temperatures range from 

22.3°C in March to 24°C in May. March is typically the wettest month of the year with rainfall 

steadily decreasing through May. The upper limits of monthly rainfall peak at 1323 mm in the 

East Maui mountain range and 970 mm in the West Maui mountains in March and decrease to 

around a maximum of 700 mm in both mountain ranges by May. Making May typically one of 

the driest months of the year. During spring, the recorded temperatures at Maui weather stations 

compared to the 30-year averages reveal that the spring temperatures did not differ far from the 

normal (Fig 3.3). However, temperatures recorded at the higher elevation weather station in Kula 

did indicated slightly warmer temperatures than the expected. Average recorded rainfall over this 

period compared with long-term averages indicate that spring was far wetter than normal (Fig 

3.3). It is important to note that this variation in rainfall is largely due to one storm event that 

occurred early-April 2018 which accounted for nearly half of all recorded rainfall for the three-

month period. Excluding the April storm event, recorded rainfall was similar to expected long-

term averages.  

Fall (October 8, 2018 to January 4, 2019) long-term mean monthly temperatures ranged 

from a low of 5.9°C in December to 8.1°C in October. Mean monthly high temperatures ranged 

from 22.5°C in December to 25.3°C in October. Average rainfall over this three-month period is 

typically wetter than spring and maximum monthly rainfall remains around 1000 mm between 

both the East and West Maui mountains. Based on the expected conditions from long-term 

averages, fall is generally wetter and warmer than spring. However, cross-referencing expected 

long-term averages with those recorded at weather stations during this three-month period 

revealed that fall was slightly warmer than expected (Fig. 3.3). Similar to spring, the Kula 
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RAWS weather station exhibited the largest deviation of any weather station possibly indicating 

high elevations over both seasons were warmer than average. Furthermore, rainfall throughout 

fall was lower at all weather stations indicating a drier fall than expected. 

 

Fig. 3.3. Long-term averages (30yr) across three weather stations for each season of data 

collection. Long-term average data are denoted by bar plots shaded by season and observed 
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weather data collected from each weather station during the study period are displayed by points 

of identical color.  

 

Basic stats 

In total, 30 sites were visited during spring 2018 and 31 sites were visited during fall 

2018. A total of 1,145,644 photos were taken by cameras traps for spring and 924,114 photos for 

fall. For spring, pigs were detected by camera traps at 18 sites with a mean of 62 ± 21 detections 

per site and a maximum of 1,882 detections at a single site. In comparison, pigs were detected by 

cameras at 24 sites for fall with a mean of 34 ± 9 detections per site and a maximum of 859 at a 

single site. 

At 17 of the 18 sites where pigs were detected by camera traps for spring, pig sign was 

also recorded. Additionally, four sites had records of pig sign, but no pigs were detected by 

camera traps. All but one of the sites had records of pig sign for fall, however, an average of 15 ± 

3 and 13 ± 2 signs of pig were recorded at sites where pig sign was present for spring and fall 

respectively. Both seasons had a maximum value of 38 recorded signs of pig presence at a single 

site.  

Spring 2018 Model:  

Four of the best-fit model configurations are represented in Table 3.1. Results from 

model-fitting indicate that spring camera data was negative binomially distributed due to AIC 

values being lower for all negative binomial distribution models when compared to Poisson 

distributed models (Table 3.2). Zero-inflated models generally performed better than generalized 

linear models using both camera detections and recorded sign as the response variable (Table 

3.2).  
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The zero-inflated negative binomial distributed (ZINB) model with predictor set C was 

chosen as the best-fit model for spring camera data. This model did not have the lowest AIC 

value however all models with lower AIC values had low dispersion parameter values indicating 

under dispersion except for predictor set B with ZINB. The ZINB model using predictor set B 

was not chosen due to model estimates being abnormally high indicating signs of model 

overfitting. These models were not considered as best-fit models and predictor set C with ZINB 

was chosen due to its acceptable ű and next lowest AIC value. Predictor set B with ZINB was 

chosen as the best-fit  model for spring recorded sign data due to near synonymous AIC values 

with the negative binomial distributed GLM (NB) with set D however, set B with ZINB had a 

more acceptable ű value. The NB model with predictor set D also showed signs of predictor 

overfitting due to high predicted values that were not representative of observed sign data.  

Based on the final best-fit model for camera observation count data (Set C ZINB) the 

distribution of feral pigs on Maui for spring was most strongly driven by the amount of rainfall 

and vegetation height. These predictors were found to be the most significant variables out of the 

eight predictors used in the model fitting process. Rainfall had a significant negative model 

coefficient, indicating a decrease in the relative abundance of feral pigs with increasing amounts 

of rainfall (Fig. 3.4). Vegetation height had a significant positive model coefficient, indicating an 

increase in the relative abundance of feral pigs with increasing vegetation height. Vegetation 

height was also found to be a significant predictor for the zero component of the zero-inflated 

model. Vegetation height had a significant negative coefficient for the zero component indicating 

that with increasing vegetation height the probability of false zeroes decreases (Fig 3.4).  
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Table 3.1. A sub-sample of the larger predictor variable set including the best-fit predictor sets 

for spring and fall recorded sign and camera-captured observations 

  Predictors 

Predictor Set Count component Zero component 

A native cover*vegetation density NA 

B vegetation height, elevation vegetation height 

C annual rainfall, vegetation height vegetation height 

D vegetation density, distance to forest vegetation height 

 Note: The zero component terms for predictor sets that had them were excluded from 

GLMs and instead only the count component terms were used due to the inability to separately 

model the count and zero processes using GLMs. 
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Table 3.2. Results of best-fit models for camera observations and recorded sign data. A 

breakdown of predictor set configurations can be found in Table 2.1 

Data Distribution Predictor Set AIC ɲ !L/ • 

CAM ZINB B 196 0 1 

CAM NB D 196 0 0.77 

CAM NB B 198 2 0.89 

CAM ZINB D 199 3 0.83 

CAM* ZINB* C* 203* 7* 1.08* 

CAM NB A 214 18 0.98 

CAM ZINB A 216 20 1.02 

CAM NB C 218 22 0.74 

CAM ZIP B 659 463 8.3 

CAM ZIP C 830 634 14.9 

CAM Poisson B 866 670 28 

CAM ZIP A 1197 1001 6.7 

CAM Poisson C 1353 1157 62 

CAM ZIP D 1552 1356 51.5 

CAM Poisson D 1676 1480 75 

CAM Poisson A 1751 1555 71.3 

SIGN NB D 173 0 0.9 

SIGN* ZINB* B*  174* 1* 1.03* 

SIGN ZINB D 175 2 1.07 

SIGN ZINB C 187 14 1.15 

SIGN NB B 187 14 0.84 

SIGN ZINB A 192 19 1.1 

SIGN NB A 195 22 1.3 

SIGN ZIP B 196 23 1.7 

SIGN NB C 202 29 0.94 

SIGN ZIP D 236 63 3.3 

SIGN ZIP C 256 83 2.7 

SIGN Poisson D 256 83 5.7 

SIGN ZIP A 262 89 2.1 

SIGN Poisson B 283 110 6.03 

SIGN Poisson A 353 180 9.1 

SIGN Poisson C 396 223 13.4 

 Note: ZINB = zero-inflated negative binomial distribution, ZIP = zero-inflated Poisson 

distribution, NB = generalized linear model (GLM) negative binomial distribution, Poisson = 

generalized linear model (GLM) Poisson distribution. * indicate best-fit models chosen for each 

dataset 
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Fig. 3.4. Response curves of predictor variables used in the best-fit model using mean counts of 

camera-captured observations for spring distribution of feral pigs on Maui. The top plots 

represent the count component of the zero-inflated model and predictor significance and 

correlation to predicted counts. The bottom-most plot is a representation of the zero component 

of the zero-inflated model representing the probability of false zeroes with increasing vegetation 

height. Estimates, standard errors (SE), and the p-values for each predictor variables used in the 

best-fit model are displayed in the legend.  
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Fall 2018 Model: 

Generally, fall models fitted with negative binomial distribution performed better than 

those fitted to Poisson distribution. Zero-inflated models fitted with camera data as the response 

variable performed better than those fitted to GLMs. However, GLMs fitted with recorded sign 

as the response variable performed better than zero-inflated models. Most of the zero-inflated 

models using recorded sign as the response variable resulted in fitting errors for the count 

component of the zero-inflated model. This indicated that sign data observed during fall was not 

zero-inflated and the count component did not need to be partitioned from zero component. 

Best-fit models for fall camera and recorded sign data were ZINB model with predictor 

set D and the NB model with predictor set A respectively (Table 3.3). AIC and ű values for 

ZINB and NB camera models using predictor set D were near synonymous. However, including 

an additional predictor (vegetation height) for the zero component of the ZINB model explained 

additional variation resulting in a more robust model output. Both NB models with predictor sets 

B and D were not chosen as the best-fit model for fall recorded sign data although they had lower 

AIC values than the NB model with set A. These models showed signs of predictor overfitting 

due to near synonymous distribution outputs as the predictors and artificially low p-values. The 

NB model with predictor set A was therefore chosen due to its acceptable AIC and ű values and 

realistic model outputs.  

Based on the best-fit model for camera data for fall (ZINB set D) the distribution of feral 

pigs for fall was most strongly driven by vegetation density and the distance to forest (Fig. 3.5). 

Both vegetation density and distance to forest had a significant negative model coefficient 

indicating a decrease in the relative abundance of feral pigs with increasing vegetation density 

and the distance to forest (Fig 3.5). Vegetation height had an insignificant negative model 
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coefficient for the zero component of the zero-inflated model but was still included in the best-fit 

model as AIC and dispersion indicated a worse-fit model without it.  

Table 3.3. Results of best-fit models for fall camera observations and recorded sign. A 

breakdown of predictor set configurations can be found in Table 2.1 

Data Distribution Predictor Set AIC ɲ !L/ • 

CAM NB D 240 0 1.24 

CAM* ZINB* D* 241* 1* 1.24* 

CAM NB B 244 4 1.24 

CAM NB C 246 6 0.71 

CAM ZINB A 247 7 0.9 

CAM ZINB B 248 8 0.93 

CAM ZINB C 249 9 0.83 

CAM ZIP D 989 749 7.8 

CAM ZIP B 1027 787 8.02 

CAM ZIP A 1034 794 6.76 

CAM ZIP C 1050 810 7.18 

CAM Poisson D 1131 891 49.4 

CAM Poisson B 1230 990 50.7 

CAM Poisson A 1371 1131 54.1 

CAM Poisson C 1486 1246 52.8 

CAM NB A NA NA NA 

SIGN NB D 206 0 1.2 

SIGN NB B 221 15 1.04 

SIGN* NB* A*  222* 16* 1.03* 

SIGN ZINB A 224 18 1.07 

SIGN NB C 227 21 0.88 

SIGN Poisson D 240 34 3.92 

SIGN Poisson B 311 105 6.32 

SIGN ZIP A 325 119 5.14 

SIGN Poisson A 327 121 6.9 

SIGN Poisson C 362 156 7.9 

SIGN ZINB B NA NA NA 

SIGN ZINB C NA NA NA 

SIGN ZINB D NA NA NA 

SIGN ZIP B NA NA NA 

SIGN ZIP C NA NA NA 

SIGN ZIP D NA NA NA 

Note: ZINB = zero-inflated negative binomial distribution, ZIP = zero-inflated Poisson 

distribution, NB = generalized linear model (GLM) negative binomial distribution, Poisson = 

generalized linear model (GLM) Poisson distribution. * indicate best-fit models chosen for each 

dataset 
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Fig. 3.5. Response curves of predictor variables used in the best-fit model using mean counts of 

camera-captured observations for fall distribution of feral pigs on Maui. Top-most plots 

represent the count component of the zero-inflated model and predictor variable significance and 

correlation with predicted counts. The bottom-most plot is a representation of the zero 

component of the zero-inflated model representing an insignificant relationship between the 

probability of false zeroes and increasing vegetation height. Estimates, standard errors (SE), and 

the p-values for each predictor variables used in the best-fit model are displayed in the legend.  
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Seasonal distribution 

Fig 3.6, 3.7, and 3.8 present the distribution of feral pigs and their seasonal variation as 

predicted by ZINB and GLM models. Distribution maps for recorded sign, camera detections, 

and a standardized additive combined model are included, but quantitative spatial analyses were 

only performed on distribution maps generated from camera observations (Fig 3.7). Due to 

variability in the longevity of observable sign, distribution maps generated from recorded sign 

(Fig. 3.6) and combined additive models (Fig. 3.8) were excluded from the quantitative spatial 

analysis. Spring distribution maps show feral pigs to be most abundant in both the mixed alien 

forests of Kula and highly abundant throughout the northern and eastern slopes of HaleakalǕ 

(Fig. 3.6, 3.7, & 3.8). Pigs were mostly absent from the drier high elevations of HaleakalǕ and 

extensive areas of fallow agriculture of East and West Maui. Spring maps show pigs to be most 

abundant in dense mid-elevation wet and mesic forests of East and West Maui. Considerable 

abundances of pigs also occur in the lower elevation dry forests on the western slopes of East 

Maui. Spring distribution of feral pigs seemed to be highly constrained to forested areas and an 

analysis of variance (ANOVA) indicate a significant shift outside of these land cover types 

during fall. Fall maps show a shift in pig distribution to higher elevations of HaleakalǕ 

dominated by dry and mesic shrubland (Fig. 3.9). Pig abundance seemed to be less constrained 

by forested cover and more constrained by the distance to forest as indicated during model 

development. ANOVA revealed significant shifts in pig abundance from native wet and mesic 

forests and alien forests into more open native mesic shrubland between spring and fall (Fig. 

3.9). Overall distribution during fall for models generated from camera data appear to be more 

highly constrained to distinct habitat types than spring (Fig. 3.8).   
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Fig. 3.6. Feral pig distribution maps generated from the best-fit models for spring (left) and fall 

(right) using recorded sign abundance data. Maps were created using all available land-area 

without excluding existing ungulate proof areas (top) and excluding ungulate proof areas 

(bottom).   
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