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ABSTRACT

Wild pigs Sus scrofpare one of the mostide spread teestrial mammalsn the planet
and have costly impacts to both natural andnagednvironments. Thewerelisted as one of
thetop100world s wor st invasive species and have cau
extinctions of some of the most ceiily endangered species on the ptaitheir ability to
function as both a top predator and destructive herbivore has made them a particularly serious
threat throughout island ecosystems where species are not evolutionarily adapted to defend
against suchehaviors. In continental ecosystertiey have been shown to fundamentally alter
predatofprey dynamics, compete with native fauna, and cause billions of dollars of
environmental damage. Given the extensive body of literature documenting these vaggtss thr
there remain large gaps in obasic understanding of pig ecology and the extent at which they
threaten biodiversity. To address these knowledge gaps, this thesis quantified the extent of wild
pig threats t&9,590terrestrial taxaising the largestpecies data base available: The
Inter nati onal Uni on for the Conseramlyzeddhe of Nat U
spatal ecology of feral pigs oMaui over thespring andfall of 2018using species distribution
models Results from this thesisdicate that wild pigs threaten 6%Xa worldwide, with plant
taxaand herpetofauna (amphibians and reptiles) particularly at risk.pigigdthreaten nearly as
manytaxaas domestic dogs and feral cats, who are often reghydiée conservation
communityas the most problematic invasivepeciedo biodiversity. On Mauithe spatial
ecologyof feral pigsappearedheavily driven bybothtemporallyvariable environmental
conditions andlifferences in hunting pressure. Between the spring and fall off2@dl®igs
significantly shifted fom mixed alienforests into sensitive native mesic shrublands.
Management efforts to reduce the significant shift of pig abundance ist$basitive native

ecosystems are of the utmost concern.
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CHAPTER 1
Introduction

Wild pigs Sus srofa) areone of thenost problematic terrestrial manatethroughout
both their introduced and native rangigentionally introduced by humans for food
provisioning, game recreation, and illegal stocking by hunEssrofanow occupy six
continents making them one of the most widespread terrestrial mamals(BarriosGarcia and
Ballari, 2012) S. scrofaare capable of disturbing ecosystems through a suite of mechanisms that
influence both togdown and bottorup regulatory pressurgscluding: the depredation of
herpetofaunan Alabama and Georgi@olley et al., 2010QMisturbingpredatofprey dynamics in
the Channel Islandfkoemer et al., 2003ltei ng s oi | con dlongéetaln2017j n Haw
Wehr, 2018) and decreasing plant species richnegsustralia(Hone, 2002)Wild pigscause
billions of dollars a year idamages in the United States alané the geographic distribution of
pig populationss expected to expanaith changes in climat@McClure et al., 2015; Pimental,

2007)

To address the magnitudéimpacsto the environmerfrom wild pigsand their
expandinggeographic distribution, the National Wild Pig Task Force (NWPTF) set forth
research priorities to address knowledge gapglthpig biology and ecology, economic and
ecological effects, control strategies, and educatiorhantan dimensionBeasley et al., 2018)
Chapters 2 and 3 of this thesis aim to addsesse ofthe most pressing research priorities as set
forth by the NWPF to bette understand the extent wild pig impacts to biodiversity aritieir

basic ecological requirement



Chapter 2 of this thes@ms to quantify the global ecological effectsaolid pigs on
biodiviersity. The NWPTF explicitly call for a better understargdof the impacts odvild pigs
on natural environmentas these are much less understood and studied than their impacts o
managed ecosyster(e.g, agriculture)(Beasleyet al., 2018)This study aims to address that
knowledge gap and is the first to quantify the extentitaf pig impact based oall their known
mechanisms of disturbant@oughout their native aridtroducedrange This global quantitative
study helpsdentify both taxonomic groups and regions most threaten&dl®ypigs, thereby

directing conservation and management atteribamlnerabletaxa and regions

Chapter 3 of this thesis addresses th&dspattemporalkecology of feral pigs on the
secand largest Hawaiian Islantt is important to note here that wild populations of pigs in
Hawail are referred to aferal due to their genealogy indicating the Hawaiian breed to be a
genetic hybrid of dmestic, feral, and wild populations of swif@heong H. Diong1982; Wehr
et al., 2018)Although both feral and wild pigs are classified as the same sp8ogsd¢rofa
Chapter 3 of this thesis refersH@awaiianpopulations of pigs as feral while Chaptegeherally
refersto wild pigsthroughout their nativeral introduced rangg@reaing feral pigs asntroduced
populations ofvild pigs). Overall, very little is known abouwthich biotic or abiotic factors drive
feral pig densitiegn Hawail, and even less is known about how temporal fluctuations in those
factors influence their distribution. The island of Maui provides an ideal system for studying the
distribution of feral pigs because of the diverse arrayabftht types, relatively smaize when
compared to continental systems, and s@sthblished feral pig populations. Through spatial
modeling techniqueshis study identifies primary drivers of feral pig distribution between two
contrasting seasommd quantifies the change in fenaig distribution On a more basic levghis

studyprovides reproducible, cosgffective methods for quantifying feral padpundancethat are



explicitly called forby the NWPTF. The results from this study have broeathiry applications
particularly br management agenciesHna w a whéré a understanding of feral pig
distributionmay mitigate potentialconflict between conservation and game management

objectives.



CHAPTER 2
Quantifying the impact of wild pigs on global biodiversity

Abstract

Humans have facilitated the spread of species outside of their nativesiat@ezgions
where they @l not historically occur, leading to significant impacts to native biodiversity on a
global scale. The modef distribution and establishment of exotic andasive species are well
studied and documented, libe degree of impact of invasive species on biodiversity is difficult
to enumerateThe IUCN Red List is a comprehensive list 980105,700species and is a
powerful tool to quantify the threat of goi@matic speciesn this chapter, laim to quantify the
impacts of a globally distributed invasive specweid] pig (Sus scrofy that is known to modify
ecosystems through predatjalisturbance and degradation of habitat, disease risk, competition,
andhybridization. In total, 672 taxa were recognized as threatened by wild pigs throughout 54
different countries. Out of the 672 taxa, 414 were either endangered or critically endangere
species and 14 species listas scrofaas a major contributing faatto their extinction.
Additionally, island ecosystems were found to be more vulnerable to threatS@ioetrofaa
phenomenon particularly driven by species of concern on islaralgytiout Polynesia,
Micronesia, and Melanesia. Wild pigs ranked amongesof the most problematic invasive
predators such as feral cats and domestic dogs. Threatened species were distributed across
taxonomic groups indicating pervasive ecosystem leveathy however, island plants and

herpetofauna were among the most tleead taxa.



Introduction

Wild pigs Sus scrofapriginate from Eurasia and were first domesticated around 9000
years agd@Larson et al., 2005)Since domestication, humamave brought pigs to nearly every
corner of the globe where feral populations have quickly established. Their utility as a food
provisioning resource has made pigs one of the most widely distributed mamthalsvorid
and inevitably led them to regiopseviously unexposed to large terrestrial omniv@kéassei
and Genov, 2004Most commonly isind ecosystems, these unexposed regions areuterly
vulnerable to the presence of invasive species due to native and endemic species lacking
appropriate evolutionary and behavioral tréiganks and Dickman, 2007; Gibbons et al., 2000;

Parker et al., 2006)

Pigs wereOl o$§tethei Wonldds Worst I nvasive A
spot amongst other more frequently discussed invasive terrestrial species such as fEeiscats (
catug and rats Rattus rattuy(Lowe etal., 2000) Pigs are unique among other problematic
terrestrial invasive species; in that they are omnivorous generalists and function as both large
predators and herbivores throughout their native anddatred rangéBarriosGarcia and
Ballari, 2012) They have been documented predating upon a variety of vertebrate and
invertebrate species throughout island and continental ecosy&ealBes, 1975; Coblentz and
Baber, 1987; Jolley et al., 201@)sturbing nest sites and plant assembl§Ge and Litton,

2014; MacFarland et al., 1974)ybridizing with otheendangere@uidag(Semiadi and

Meijaard, 2006)competing with native faun®esbiez et al., 2009; Focardi et al., 2QG0)d as
vectors for disease transmissi@arriosGarcia and Ballari, 2012; Gortazar et al., 2007; Spear
and Chown, 2009)n addition to their direct impacts on both wildlife and plant communities,

they are generally known to disturb ecosystem structure due to their unique rootdiggamgl
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behavior(Mitchell et al., 2008)Consequentially, pigs are considered ecosystem engineers,
having considerable secondary effects on organisms by physically alterira bladiracteristics
(BarriosGarcia and Ballari, 2012Y o accurately address the extent of pig threats to biodiversity
these various threatening mechanisms (predation, herbivory, and ecosggiaeering) must be

incorporated in any comprehensive threat assessment.

Although global summaries of pig impacts do exist they have either been global
gualitative papers drawing implications from many srsalille quantitative studi¢Ballari and
Barri os Gar c 2arcia a@doBallari, 20B2aMassei ansl Genov, 2004; Nufiez et al.,
2010; Spear and Chown, Z)®r have been largecale quantitative studies addressing a specific
mechanism through which pigs threaten the environifidracke, 2011; Doherty et al., 201d)
their impacts on a particular ecosystem tg@ampbell and Long, 2009EIobal qualitative
review papers are critical in identifying the mechanisms and effects pigs have on ecosystems yet
are insufficient in quantifying the extent of these impacts to species and environments outside of
the areas from which the data is drawn. Furthermore, iacgée quantitative papers are rare and
typically focus on one aspect of species impact (predation, herbivory, or ecosystem engineering).
As a result, a comprehensive global quantitative assessmoling all mechanisms through

which pigs threaten biodiversity is nonexistent.

In thischaptey | quantify the extent of pig threats to both plant and wildlife including all
mechanisms by which pigs threaten these taxa and all potentially threatenéisiagdhis
information,| enumerate how many species are threatened by pigs and which taxonomic groups
are most vulnerablé.also identify which threatening mechanisms are most prevalent and which

regions globally can be considered hotspots in terrpgydhreats.



Methods

A complete copy of the IUCN Red Lifir all terrestrial vertebrategasacquiredn June
2018(n=67,246 taxa)Data deficient taxa were excluded frohistdatabasdue to uncertainties
surrounding their assessment accuracy. TheectfiatabasenE59,590 taxa) was thdiitered
usingasystemsearch in R (R Core Team, 2013) to ide]
Threatso section for each species that cont ai
domesticus, Sus, scrofa,dpboar*, boars, hog, hog*, hogs, swine. This list of keywords was
compiled based on commonly used names to describe pigs in management literature. This script
flagged a total of 815 taxa for manual reviéwid not include threats associated with
domesic at ed pigs, however, droaregitn@go pwagrse dterseati &
Similarly, some species were not threatened by pigs directly, but instead by human hunting
practices catalyzed by the presence of pigs. These threats were noted mzitidediin the

analysis. False positives were flagged and removed from the pig threatened species subset.

The fAiMajor Threatso section was then manua
of 672 taxa. To ascertain the threat level fnoitd pigsto these taxa used a similar approach to
previous studies and categorized threat | evel
informationprovidedi n t he @A Maj ora nTdh rtehaet stda xsaedcst(Dobartly r e nt  t
et al., 2016; Jones et al., 2008; Medinaetal.,20klhose t o i nclude fApotent
Ami xedo | i ke many other studies due to uncert
associated with the threatened taxa. Threats from wild pigssmeretimes inferred by the
|l i stingbs author based on overl apping distrib
evidence of direct impact was sometimes missing. In these cases, threats from wild pigs were

categori zed as 0 pvere asotiated With extinétlorenitically lendangeted



taxa, text alluding to any threat fromild pigswer e consi dered fimajor o. TI
taxa were considered by default to be minor as were secondary threatsttoestaned taxa

unless dterwise specified. For each taxon threatened by pgegorized threat as one or more

of the following categories: Apredationo, Adi
Ahybridizationo. Unl ess ot he rwidipgsavascansidered i e d,
both Apredationo and dAdi st ur legpetafaenand gidundni | ar | vy

nesting birds was counted as both Adisturbanc

Range information obtained from the IUCN Red List was categorized intdféB=dt
subregions (Fig2.1). These subbegions were additionally classified as either island or
continental based on their geographic location for a comparative threat analysis. Since IUCN
Red List range data is classified by country, many endemicespeccurring on islands were
cross listed as occurring on both the country which governs the island and the island on which
they were presenh{ = 3017). These crodistings would have overinflated the threats occurring
in continental regions. Using thilt-in filter functions in Microsoft Excel and more detailed
range information from the ARange Description
taxa were manually filtered by reading each t

endemicspecies outside of their range were removed-(2496).

Results

Global threat from wild pigs on biodiversity

Wild pigs were documented as a threat to 672 species from 54 different countries. Of
these, 267 taxa were classified as critically endanger@datd were endangered, and 14

extinct taxa had classified pigs as a major contributing factor to their declin@ @& Fig.



2.4). Disturbance of habitat threatened 594 taxa making it the most frequently cited threat type,
followed by 486 taxa threateth by predation with all other threat types affecting less than 20
taxa (Fig.2.3). Of the 672 taxa threatened by pigs, 345 were plants (59 families), 123
herpetofauna (25 families), 96 birds (38 families), 84 invertebrates (22 families), and 24
mammals (1 families) (Fig.2.2). In total, 59% of threatened taxa faced major threats, 21%
faced minor threats, and 20% were potentially threatened by wild pig2@jigNearly a third

(30%) of all threatened taxa facing major threats were distributed amoregsptant families

(56 Campanulaceae26 Asteraceagand21 Arecaeag and one reptile family2@d Scincidag.

3.2. Continental vs. Island Regions

Wild pigs in island regions generally have stronger negative impacts on biodiversity
when compared to continih regions (Fig2.5). Plants antierpetofaunavere the most
threatened island taxa while birds dretpetofaunavere the most threatened continental taxa
(Fig. 2.5). Collectively, the Micronesian/Melanesian region had the highest severity of assessed
taxa threatened by wild pigs including 19% of all invertebrates (64 taxa), 13% of herpetofauna
(67 taxa), 4% of plants (59 taxa), and 2% of all birds (25 taxa). The Polynesian islands were the
next most threatened island region with 31% of plants (248 tlaregtened, 14% of
herpetofauna (5 taxa), and 9% of birds (31 taxa). Notably, 18% (9 taxa) of all assessed
herpetofauna in the Galapagos were threatened by wild pigs with over half of them belonging to
the Testudinidadamily. For continental regions, NorAmerica faced the highest threat rates
from wild pigs with 1% of all birds (11 taxa), 0.9% of reptiles (5 taxa), and 0.5% of mammals (2

taxa).
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Fig. 2.1.Number oftaxathreatened bwild pigs for each of the 18 subregions. Percent of all
assessethxathreatened are given in parenthesis. Antarctica was the only subregion wiildout
pig presence therefore (%) not given.

Table 2.1. List of species withild pigs classified as a major dabuting factor to their

extinction
Common Name Species Name Region
- Melicope nealae Hawai'i
Kauddflatsedge Cyperus rockii Hawai'i
- Cyanea sessilifolia Hawai'i

Tristan moorhen
South Island snipe
Kaua@i &ag@dag@

Gallinula nesiotis
Coenocorypha iredalei
Moho braccatus

Hawaiian Greensword Argyroxiphium virescens

Mt. Kaala cyanea
Mount Glorious day
frog

Hibiscadelphus woodii
Delissea niihauensis
Melicope macropus
Cyanea superbssp.regina

Taudactylus diurnus
Chilonopsis nonpareil

Tetramolopium consanguineusubsp.

consanguineum

Saint Helena
New Zealand
Hawai'i
Hawai'i
Hawai'i
Hawai'i
Hawai'i
Hawai'i

Australia
Saint Helena

Hawai'i

10
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Discussion

This study is the first comprehensive analysis to quantify the threat to global biodiversity
from wild pigsin both continental and island ecosystefitgs assessment indicates that wild
pigs are nosdiscriminant generalists, threatening 672 taxa globally, and have contributed to the
extinctions of 14 tax | also reiterate that over hali{ 414 taxa) all tax¢éhreatened are listed as
either critically endagered or endangered and are of the greatest conservation concern. The
estimates fronthis assessment are likely conservative due to the exclusion of data deficient
species irtheanalysis and known biasessasiated with threat reporting and species assests
(Bland et al., 2015; Bohm et al., 2013; Keith et al., 20EGjthermore, wild pigs have highly
destructive behaviors that cause cascading trophic efféots Wwroadly impact ecosystems, yet
these threatare not easily quantified and most likely are largely excluded from species
assessment{8arriosGarcia and Blgari, 2012; Massei and Genov, 2004; Roemer efal01)
Although excluded fronthis analysis] also found frequent mention of bycatch by hunters

alluding to further impact associated with the presence of wild pigs.

Impacts to islands from wild pigseaparticularly acute, especially in the Polyaas
region. This result is overwhelmingly driven by taxa in the Hawaiian Islands; with 92% of alll
taxa threatened by pigs in this region occurring on the Hawaiian Islands. This is likely due to
data deficienies in species assessments on smaller develggargl countries throughout
PolynesiaBrummitt et al., 2015)Studies have found that these data deficient species are
typically of high conservation concern and our results may imply that threats to taxa throughout
these data deficient areasRilynesia may be comparable to those facedxy in the Hawaiian

Islands due to similarities in ecosystem struc{Btand et al., 2015; J@a et al., 2011)Thus,
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the threats to the brdar Polynesian region as well as other data deficient regions around the

world may be considerably greater than indicated.

Proportionately, island plants and herpetofauna are the most threatened species.
Hempetofauna are threatened by both direct predatia disturbance to nest sites. Herpetofauna
in the Galapagos and Micronesian/Melanesian region were found to suffer higher threat rates
than elsewhere (18% and 13% respectively). For island regions wifficrent species
assessments, this is partiglyyamportant as herpetofauna present there may be more threatened
by wild pigs than indicated by this assessment. More comprehensive species assessments and
research attention to island herpetofauna is rieedéehey are one of the most data deficient
taxonomic groups on the Red Li®land and B6hm, 2016; Jones et al., 2016; Sttat.,

2004) Generally, plants had the highest number of taxa threatened by pigs, with this result
driven by species in Polynesia£ 248 taxa) or Micronesia/MelanesiaX 58 taxa). Island

native and mdemic plants are most likely threatened in ¢hegjions due to the absence of
analogous terrestrial mammalian omnivores throughout their evolutionary Hidemglow,

2003) As a result, many island plant species lack the evolutionary traits and behavioemthat c
protect them against omnivorous ungulgi@ssurmont et al., 2011; Parketral., 2006) The

same is likely true for istad herpetofauna, leaving them naive to threats from wild(Bigsks

and Dickman2007; Courchamp et al., 2003; Cox and Lima, 2006)

This analysis suggests nearly five times more taxa are threatened by wild pigs than an
IUCN metaanalysis conducted dyoherty et al(2016. Incorporating both plastind
amphibias which wee excluded from Doherty et gR016)and rank among the highest
threatened taxas crucial in identifying the true extent of wild pig impact to biodiversity due to

their nondiscriminant natureThe keyword searcln this assessmeatso included a widerange
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of search terms due to prelimmaesearch and consultation with [IUCN indicating a wide range

of terms used to descril@is scrofaEven so, the list of species impacted by pigs is likely an
underestimate, as plants, invertebrates and herpetadagiiodten data deficient, or have neth
assessed by the Red [{Bland and Bohm, 2016joward and Bickford, 2014 Additionaly,

pigs have often been present in many island ecosystem (where they have the greatest impact) for
a longer period than other predat(egy.catsor dog9 meaning that historical declines caused by

the introductiorof pigs may be poorly documented.

The trreats from wild pigs rank among many of the most problematic invasive predators
that have undergone similar analyg@sherty et al.2016,2017; Medina et al., 2011Many of
these assessments exclude threats to terrestrial invertebrates and plants as well as any threats to
species of least concern or near threatened status. If both thase wete excluded from our
assessment Vd pigs still threaten 183 taxa globally (80 birds, 15 mammals, 88 reptiles) ranking
them among some of the worl dés t(Dghertyetalasi ve
2017) Also, threats to island regions from wild pigs rank closely to feral(Eats catu3,
which are often regarded as the most detrimemtalsive predator to island ecosystems
(Nogales et al., 2013Medina et al(2011)identified 175 taxa threated by feral cats on islands,
while our assessment indicates wild pigs theeatt least 147 taxa using the same criteria. Given
the role of wild pigs as both a top predator and destructive herbitiereadditional threats to
plant and invertebrate taxa make them a serious cause for concern and indicate major ecosystem
level impacts(Simberloff, 2A1). Furthermore, wild pigs not only threaten a comparable number
of taxa as other invasive predators, they impact taxonomic gitbapare often minimally

threatened by other invasive species, such as herpetofauna andgs#atd C. et al., 2016)
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Given these extensive threats, thare multiple ways to effectively manage for pig
threats on both island and continental systems. In many cases, wildepaysabatable threat,
with available management actions like exclusion fencing, baiting, trapping, and eradication on
smallerislands or from protected areg€ourchamp et al., 2003lsland regions, which are most
threatened by the presence of wild pigave benefited from successful eradication campaigns
and the subsequent recovery of native spemesss taxonomic groupse indcative of major
ecosystem level impacts associated with their preqd@roeke et al 2007) Eradication efforts
have even been successful for larger islands (>180kivere threatened endemic species are
beginning to recoveiCoblentz and Baber, 1987; Cruz et al., 2005; Ramsey et al.,.2009)
Although quantitive information on native species recovery after eradication is uncommon,
Donlan et al(2007)found considerable increases in the density of the endemic Galapagos ralil
(Laterallus spilonotusafter goat and pig eradication. Wheradication is not feasible (densely
populated islands or continental regions), other adaptive management approaahésim ti
targeted control effort&Gurtler et al., 2017; Weeks and Packard, 2@0@) protected refuges
using exclusion fencohave helped alleviate pig pressures on vulnerablg@ola and Litton,
2014; Lavelle et al., 201). However, given these management options the amount of
conservation effort dedicated toward wild pig management on isladdgpreportionate to the
threats they face as evidenced by this assesgdmmds etlg 2016) Few islands include
comprehensive pig management for the purposes of conservation and only 69 islands have been
eradicaed of wild pigs (DIISE, 2018). In comparison, 148 islands have been successfully
eradicated of cat$-€lis catusand 195have been eradicated of feral go&sfra hircus)

(DIISE, 2018) This assessment suggests that pig control efforts on island esmosystould

have the greatest benefit to biodiversity, particularly throughout Polynesia, Micronesia, and
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Melanesia. Additioally, special concern should be placed on islands with a diverse presence of
herpetofauna or native plant species due to their \athilgy. Finally, more research attention
should be focused on island herpetofauna as they are typically data deficidmeatsito these

taxa are likely far greater than indicated by this assessment.
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CHAPTER 3
Spatiotemporal ecologyof feral pigs on Maui,Ha wa i 0 i
Abstract

Species distribution models (SDM) are commonly used in resource planning to prioritize
management decisions letmporal variations often excluded from the modeling process.a
result, few studies appropriately incorportiteinfluenceof temporal vaation on species
distribution potentiallybiasing management recommendations based on SDM outputs. In this
chapter | aimed to address how temporal variation in environmamighumarmediated
conditionsmight affect thanodeling ofthedistribution ofa large omnivorous ungulate on the
second largest main Hawaiian Island. Abundance data obtained from remote camera traps and
systematic disturbance surveys were rigorously collectedtigéall andspring periodsof
2018, praiding high resolution speaedata to be used as inputs for an SDM. Using multiple
modeling methods and quantitative analysis on model outputs | found significant variation
between models déral pig distributiorproduced fronthesetwo seasons of dataléection.
Furthermore, | found that foraging behavior likely shifted betwbefall andspring. Feral pigs
appeared to prefenixed alienforests from March tday of 2018(spring) but shifted toopen
native mesic shrublands from ©ber to December 28Xfall). Finally, | found thamixedalien
forests inH a w ahbstabundanteral pig populationscompared to other habitat types and
islands,and more management attention should be placed on these areas as they may play a

critical role in increasing f@l pig disturbance on surrounding sensitiativeecosystems.
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Introduction

Species distribution modeling (SDM) is an increasingly common approach to addressing
complicated conservation and game management issues that deal with a spatially heterogenous
speciegFroese et al., 2017; McClure et &015) By modeling the distribution of that species,
management agencies are then able to prioritize management decisions based on the species
distribution and abundanceoiconservation agencies, modeling the distribution of an invasive
species enabk them to identify hotspot biodiversity areas that might be most threatetieat by
invasive specie€Tulloch et al., 2015)For game management agencies, an SDM of a valuable
game mammal allows managers to ptive which areas might be most productive for hunting.

By selectively identifing areas with low native biodiversity but highn-native game mammal
abundance, managers may achieve game management objectives while minimizing conflict with

conservation maagement objectives.

However, SDM is complicated by the influence of seasoadtion in both
environmental and human mediated conditions that alter the spatial ecology of the species of
interest. Feral pigs commonly change their spatial ecology aadifgr behavior in the
continental United States and Europe in response to sgasoiations in climatéAmendolia et
al., 2019; McClure et al., 2015; Morelle and Lejeune, 201b¢ ability to adapt to fluctuating
conditions by shifting theidistributionseasonallcomplicates the SDM approach by
introducing a temporal component into a spatially explicit model. Furthermore, human mediated
interactions with feral pigs, such asrtters or hikers, have significant effects on habitat selection
(Merli et al., 2017; Mysteud and @stbye, 1999Yariation in the frequency and quantity of
hikers and hunters in an area throughout the year will likely influence the distribution of feral

pigs. The influence of these temporally variable factors on the spatial ecology ofderatepi
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rarely studied but are essent@alunderstanding where pigse moving throughout the year and
which conditions are primary drivers of that movem@@easley etla 2018) To appropriately
align management actions witbnserviion andgame managemeanbjectives a basic

understanding aiemporal differences in feral pig distribution is essential.

The island of MauiH a w aprovdides an ideal system for studyitig spattemporal
ecology of feral pigs. Feral pig populatidma/e been established on Maui for atleast several
hundred years meaning they have likely realized their available niche(§jyeng H. Diong,
1982) The island of Maui has a diverse array of habitat typesent in both island and
continental systemsnakingcomprehensivéeld studies feasible and rdts potentially
applicableto continental system&nvironmental conditions are spatially and temporally variable
with a distinct wet and dry seasdtinally, applications o$peciesdistribution modelingfor two
objectives, conservation and game manageraeatelevant itd a w aas féral pigs are
managed as both a destructive invasive pest and an important culturet@eadionatesource.
Maui therefore provides an opportunity to téet effects of seasal changes in environmental
conditions on feral pig spatial ecology and allows for the subsequent applicasipectds

distribution modeling resulig both a conservation and game management context.

This chapter aims to comparetspatial ecology déral pigs between two contrasting
seasonsspring2018andfall 2018 on Maui,H a w aandadentify primary drivers influencing
the potential change in distribution using the most common approaches to species distribution
modeling. lhypothesizd that sasonalitywould significantly affect the distribution of feral pigs
due to changes in the frequency and quantity of rainfall, changes in temperature, and differences
in hunting pressure. During the dregringseason, | expeetlthatpig distributionwould be

constrained to areas that prowidmver from hunting pressure and sources of food during
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months of lower rainfall. During the wetttall season, | hypothesid¢hat pigswould be less
reliant upon these forested areas that pl@zover and the clase of many hunting unitsould
alter feral pig foraging behavior and habitat selection. | erpktlsts change in foraging

behavior to result in a significant shift in feral pig distribution between seasons
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Fig. 3.1. Hunting unitsacross the island of Maui denoted by the type of unit and existing

ungulate fences represented by hatched IiDesr and feral pigs are eligible for take from all
hunting units. Goats are eligible for take from units A, B, C, and D whilerfguanits E ad F

are exclusively for feral pigs and deer. Units A, B, D, and E are open to feral pig hunting year
round. Unit C is open to feral pig hunting from February through June and Unit F is open to feral
pig hunting from February through October.
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Site Desciption

The island of Maui ishe second largestawaiian Island and has a land area of 1883
(Fig. 3.1). There are two main mountain ranges, the West Maui mountains with elevations up to
1,764m and East Maui mountainsigleakal) with elevations up to 3,058. The East Maui
mountains were created through volcanic activity that began around 840,000 years ago and
remained active until as recently as 1{8ton, 1979)East Maui is a shield volcano
characterized by its gradualravling sbpes due to limited exposure to erosion in geologic time.
The West Maui mountaingere created through several volcanic series that began at least 1.2
million years ago and subsided around 500,000 yearéSagimn, 1979 In contrasto East
Maui, West Maii has been exposed to erosiveatheringor nearly 400,000 years longer
resultingin steep topography that is generally inacces&iplot Long-term nean annual
rainfall varies greatly across the island fraB0mm to over 10,006hm (Giambelluca et al.,
2012) The northeastern face dflaleakaUreceives the greatest amount of rainfall due to the

predoninant northeasterly trade winds.

Public hunting areas compr i «mwittevariodsy 15 %
restrictions on hunting seasons, daily bag limits, and sex of species dbgitalke.Ungulate
fencing is the most common approachrfonimizing impacts fromnvasive ungulates® native
species and ecosystems theisland of Maui and across mosttbé state oHawaid. There are
231km of existing ungulate fences Mauiand tey are present in both mountain ranges
However, due to ffierences in terrain,mgoroaches to ungulate fencing differ between East and
West Maui. West Maui ungulate fences are strategically constructed to prevent movement of

ungulates throughritical corridors with cliff areas unfencedffectively prevering ungulates
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from accessing higher elevations. Ungulate fences on East Maui are desgitgnedingle

continuous fence encompassing the East Maui mountains.

Hunting seasons generally play an impartate in the distribution of game species and
the accessibty of optimal foraging habita¢Stankowich, 2008)As such, it is important to
consider not only thiandscape of biotic and abiotic variableg also the landscape of human
interaction with the environmenimost notably the presencealssence of hunting pressure.
During spring2018,all hunting units were open for game mamnvath limited hunting access

duringfall (Fig 3.1)
Methods
Seasonal @nditions

Long-term averagelimate data wreobtained from the rainfall atlas bffa w & is 0 i
website and were used as expected climatic conditions for each season of data collection. These
long-term averages were then crasferenced with observed data from local weather stations to
characterize 2018 field conditions. Observed weather stationveageobtained from Remote
Automated Weather Stations (RAWS) and the National Oceanic and Atmospheric
Admini strationbés (NOAA) National Weather Serv

Kahuui, Kula, and Kélia National Wildlife Refuge.

Site selection:

Potential survey sites were locatedrbgterizng the island of Mauinto 500by 500

meter (25 ha) units using R packages rgstgmans et al., 2017andrgdal (Bivand et al.,
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2018) Sites were located at the centroid of each rasttr The rastewas masked to land
recognized as forestreserve using the Hawastate government reserve outline (State of
Hawaid 2016)and privatéy held land with preestablished accepgrmissionFor this reason,
extensive areas of fallow agricultural land and urban areas were not sampled. Additionally, all
land within ungulag exclusion fences was excluded from the random site selection pisiness
ungulates have been excluded aratleeated from these locatiariBo ensure sampling across
altitudinally stratified environmental gradients which commonly occur in the Hawlalamds,
potential survey areas wedevided equally intdhree altitudinal band®-1000 m 10062000 m
and>2000 m) to prevent disproportionate sampling of the more frequent, low altitude raster
cells An equal numbe(n=15 per banddf survey sites asrandomly drawn from these three
altitudinal bands Randomly stratified sites were generated for llo&springandfall seasonsf

data collectionThe vegetation, slope, and topography of Hawaiian habitats make it difficult to
bothaccessitesand deplg camera traps. Whearandomly selectedite could not be reached

due to topographyhe sitewasmoved to thelosest analogous locatiavithin 500mthat could

be safely accessedr else was excluded from the stuBites requiring helicopter were acsed

via the nearest accessible landing zone (LZ). If sites could not be reached via LZ, camera traps
and surveysvere deployed in a rectangular array on an azimuth towards the site location no

greater than 506 from the site location.
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Fig. 3.2 Map of Maui, H a w ashowving site locations for bo#tpringandfall data collection
where camera traps wedeployedand disturbance surveys were conducted

Survey design:

At each site an array of six cameraas installedBushnell Trophy Camgjistributedat
regular 50m intervals(Bushnell Trophy Cams, Bushnell, OverdaRark, KS)Cameras were
programmed to take two consecutive images for each trigger and reset after three seconds. Sites
were deployed for a twaweek period under one of two configuratialepending on terrain: (i) a
rectangular array, with cameras degdyn two parallel lines of threand (ii) a linear array,
with all six cameras deployed along a transect. Linear arrays were deployed only in areas where
topography did not allow for actangular array, such as on ridge crests with steep receding

slopeson either side. Cameras were deployed in a manner that maximized the probability of
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detection, such as focused in a clearing, trail or area with obvious previous pig activity within a
10 mradius of randomly prselected GPS eordinates. Cameras wereaathed to vegetation at
approximately waist heigland angled on kevelto slightly downward facingrajectory with the
ground. Camera data weneiewedmanuallyusinglrfanview (version4.53) so that potos
containing images of feral pigs were filteret adatabase for analysfskiljan, 2019) After

filtering, the mean count @ameracaptured observations of feral pigs per site was calculated

and used as one form of count data for model building.

At each camera location, signs of pig disturbance were recorded in foyrl00m
guadrats over a standardized fmmute search peyd for each quadrat. For linear arrays
steep slopegjuadrats were positioned along a line transect, while in rectangular arrays quadrats
were in a square configuration. In each quatthaipresence @bsence of old and new signs of
tracks, scat, diggg and vegetation damagere recordedNew sign was defined as having
likely occurred ndaterthan two weeks prigbased on ledall on top of sign, desiccation of
soil, layered disturbances, or otiwisual cues of time since the sign was produbesturbance
surveys were conducted both upon the deployment and recovery of cameras from each site.
Disturbance survey data was collated into a .csv filetlaefitequencyof each type of sign
recordedtradks, scat, dig, etc.) was averagedeach site loationto calculate the averagé
each type ofecorded sigmper site The sum of the averages of each type of recorded sign per

site @ll sign was then used as the second form of abundance data for mddeig.
Predictor variables

Environmental anttumanrelated predictor variables were chosen based on the expected
ecological requirements of feral pigs and the influendeuafan interactions dieral pigs.In

total, eight variables were chosen asdictors used in the modeling process: vegetawmsitly,
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vegetation height, mean annual rainfall, elevation, native vegetative cover, distance to ungulate
fences, distance to hiking trails, and distance to foressied data obtained from the State of

Ha wabis6o iOf f i c e midd StRtésaaoiogtrsgryvey (USGSEBapAnalysisProject

(GAP),t he Rai nf al li,and othealayeroprovidédhby the [@epartment of Land and
Natur al Resourceds (DLNR) Divi@@ergelyandf Forestr
McKerrow, 2013,Giambelluca et al., 2012pistanceand densityrelated variables were

manually generated from existibgse feature&JSGS GA° Land Cove(30m x 30 m),

ungulate fence lines (DOFAW), and Na Ala Hele trail systPirNR). These base features were
used togenerate the following variables as predictdistance to foregfmesic and wethative
vegetative coveistance to ungulate fenamddistance to trailsTo generatalistancerelated
variables base features werestarized from their original reBgion to 500m? and resampled

usi ng t he meMdraladandiLejeupep20isSpisfane-related variablewere then
created from these 506 raster layers using the Euclidean distance tool in ArcGIS. The

distance to forest predictor lay@as generated usiranly mesic and wet forests as the base

USGS GAP land Cover layer @as unreliable imlistinguishing between dry forests and sparse

dry shrublandDensityrelated variableghative coven) were created by masking USGS GAP
Land Coverdata toanyvegetativecover classified aBnatived and resampling the bageature
(30m)to500m’usi ng the met hod i bi‘elatedeoatpuiHintasetc al cul a
al., 2017) The vegetation height layer obtainednt USGS GAPRnadequately @ssified

buildings in urban areas as tall vegetation which required reclassifying eakmsated with

urban areato 0 using the raster package iffHjmans et al., 2017)All predictor layers used in

the analysis were standardized at &#0esolutionas this was determined to Agood estimate

of themean home range size for feral pig¢iim w aanddwiould allow each survesjte to be
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spatially indepedent Collinearity between predictomsas consideredsing pairwise Pa&son
coefficients(R?) and any predictors witR? greater than 0.75 were exclud@brmann et al.,

2013; Elith et al., 2010)
Modeldevelopment and validation

Distribution models for both seasons were developed using the two most common forms
of abundance data forgs. (i) mean counts of camecaptured observations and (ii) sum of
recorded sign. These two data sources were used as the response variagpwisenodel
fitting process. During this process, datarefitted to several types afegressre modek with
varying distributiongo addressnodel overfitting and issues assocthgth over or under
dispersionHoef and Boeng, 2007,)Dispersion can be defined as more variance than might be
expectedased on meawariance scalin@gnd is often present abundnaceatadue to inherent
heterogeneity of biological dafe/hite and Bennetfs996) It is imperative to test for this
additional variance as it cdmas the meawmaluesand standard errors of parameter estimates
(Hilbe, 2011) To account for dispersion, different types of models can be,fittgdis case a
generalized linear model (GLM) or a zanflated model. Additionally, these models can be
fitted to different distribution types (Poisson or negative binomial) or additpyedictor
variables came included to explain the unexpected variandrindlance data were fitted to
Poisson and negativarimmial distributed GLMdrom theétat®anddMASS6(Venables and
Ripley, 2002)ackages in RPoisson or NBand zereinflated mixture models(ZIP or ZINB)
from t he O(Fealaslettl., pOA8p lkcaayre for issues withver or under dispersed
data(Hijmans et al., 2017; R Core Team, 201®)isson and negative binomial distributions
were chosen as biological count datast often best fit these distributiofidénes et al., 2015;

Lyashevska et al., 2016; Oppel et al., 2012; Wenger and Freeman, 2008; White and Bennetts,
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1996) Zercinflatedmodels were included in the model fijiprocess athey provide a means
of partitioning the model into two partggro component and count componenvttich help

explain dispersion caused fatsenegative countéDénes et al., 2015)

Predictor variable sets were constructed based on a priori hypothesis of response
predictor relatioship and were fitted to modekith increasing complexityGLM to zere
inflated) until dispersion was appropriately accounteddiod model overfitting was not presen
Model predictions and outputs were visually assessed for any indication of predesftiong
(Elith et al., 2010)Examples of overfitting include predictor distribution outputs mirroring the
distributionand frequencyf predictor variables.rédictor sets were cetructed to consider first
and second order relationships of predictor variables dedhations between predictofihe
same predictor variable sets were used to identify best fit models fasgyotgandfall. Bestfit
models were chosen based on Akainformation Criteria (AIC) antheratio of thesum of the
squared® e a r sesiduds Benceforth referred to as thespersion parametéAnderson et al.,
1994; Cox, 2018; Zuur et al., 2009he dispersioparameters() is calculated using equation 1
wheree values equal to one indicate nsplersion and values greater or less than one indicate
over and under dispersion respeely (Zuur et al., 2009pg. 226. Models with adispersion
parameter exceeding Iwkere considered over dispersed #muse with much <D were
considered under dispersed. These models arer corrected for dispersidy fitting
different distributions (Poisson or negative binomial) or model t{@&#1 or zerainflated) or
elseexcluded from the model selection procésdotal, over20 predictor variable sets were
constructedhat underwenthe model fitting proces® identify bestfit models for bottrspring

andfall datasets.
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. — (1)

Seasonatlistribution

Only models using mean counts from cameaptured observations were used to
guantify the effect of season @eral pig distributon due tahelongevity ofobservablesign
spanning greater than the season pefioddentify the effect of season on the distribution of
feral pigs on Mauthe coefficients and significance of predictor variabhe compared
Quantifying the significance and effect of predictor variables hilpntify which predictor
variablesare primary drivers of feral pig distribution between each seasotina@nckelationship
(positive vs. negativeBestfit models were then used in a predictivedabframework ¢
estimateexpected feral pig abundances across the island of Maui for each? 5@étercell to
produce seasonal distribution maps. These maps were then qualitatively and quantitatively
comparedTo quantitatively test for seasonal changelsabitat sedction,distribution maps were
standardized using the maximum abundance estimates between the two seasons to calculate a
relative abundance index on a scale from O to 1. These standatdhizdzlition maps werthen
subset into nine differg habitat typs as defined by the USGS GABNnd Cover dataset
Analysis of variance tests (ANOVA) were performed compasiorgngandfall relative
abundances within each of the habitat typassbforchanges in habitat selectid®values from
ANOVA tests were adjued using the Bonfeoni correction factoto account for the number of

habitat typesestedBland and Altman, 1995)
Results

Seasonal conditions:
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Spring(March 8" to June %, 2018) longterm mean monthly temperatures range from a
low of 5°C in March to a low of 7.4C in May. Mean monthl high temperatures range from
22.3C in March to 24C in May. March is typically the wettest month of the year with rainfall
steadily decreasing through May. The upper limits of monthly rainfall peak ati32id the
East Maui mountain rege and 970nm in the West Maui mountains in March and decrease to
around a maximum of 70@m in both mountain ranges by May. Making May typically one of
the driest months of the year. Durisigring the recorded temperatures at Maui weather stations
compaed to the 36/ear averages reveal that thigringtemperatures did not differ far from the
normal (Fig 33). However, temperatures recorded at the higher elevation weather station in Kula
did indicated slightly warmer temperatures than the expected. geveeaorded rafall over this
period compared with lonagerm averages indicate thagiringwas far wetter than normal (Fig
3.3). It is important to note that this variation in rainfall is largely due to one storm event that
occurred earhApril 2018 whichaccounted for @arly half of all recorded rainfall for the three
month period. Excluding the April storm event, recorded rainfall was similar to expected long

term averages.

Fall (October 8, 2018 to January 4, 2019) kiagn mean monthly temperaturesgad
from a lowof 5.9°C in December to 8°C in October. Mean monthly high temperatures rdnge
from 22.5C in December to 258 in October. Average rainfall over this thn@@nth period is
typically wetter tharspringand maximum monthly rainfall remaiasound 1000nm between
both the East and West Maui mountains. Based on the expected conditions frdariong
averagesfall is generally wetter and warmer thgioring However, crosseferencing expected
long-term averages with those recorded at weattagions duringhis threemonth period

revealed thafall was slightly warmer than expectéelg. 3.3) Similar tospring the Kula
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RAWS weather station exhibited the largest deviation of any weather station possibly indicating
high elevations over botleasons were waren than average. Furthermore, rainfall throughout

fall was lower at all weather stations indicating a dia#rthan expected.
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Fig. 3.3 Longterm averages (30yr) across three weather stations for each season of data
collection. Longterm average dataeadenoted by bar plots shaded by season and observed
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weather data collected from each weather station during the study period areedisylgpints
of identical color.

Basic stats

In total, 30 sites were visited durisgring2018and 31 sites were sited duringfall
2018 A total of 1,145,644 photos wetakenby cameras traps fepringand 924,114 photos for
fall. Forspring pigs were detected by camera traps at 18 sites with a mearnta? B2letections
per site and a maximum of 1,882 detectiaha single site. In comparison, pigs were detected by
cameras at 24 sites ftall with a mean of 34 + 9 detections per site and a maximiB59 at a

single site.

At 17 of the 18 sites where pigs were detected by camera traggifog pig sgn was
also recorded. Aditionaly, four sites had records of pig sign, but no pigs were detected by
camera traps. All but one of the sites had r@sof pig sign fofall, however, armverage of 1%

3 and 13 + 2 signs of pig were recordddites where pig sigwas present fospringandfall
respectively. Both seasons had a maximum value oéd&8dedsignsof pig presence at a single

site.

Spring2018Modet

Four of the bestit model configurations are represented in Table Results from
modetHitting indicate thaspringcamera data was negative binomially distributed due to AIC
values being lower faall negative binomial distribution models when compared to Poisson
distributed model¢Table3.2). Zerainflated models generally performed better tharegalized
linear models using both camera detections and recorded sign as the response variable (Tabl
3.2).
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Thezeroinflated negative binomial distributedINB) model with predictor set @as
chosen as the best model forspringcamera data. This metdid not have the lowest AIC
value however all models with lower AIC values had dispersion paameter valuemdicating
under dispersioexcept for predictor set B with ZINB'he ZINB model using predictor set B
was not chosedue tomodelestimatedeing abnormally higindicating signs of model
overfitting. These models were not considered as-fiestodels and predictor set C with ZINB
was chosen due to its acceptablend next lowest AIC value. Predictor set B with ZINB was
chosen as the best model forspringrecordedsign data due to near synonymous AIC values
with the negative binomial diributed GLM (NB) with set D howeveset B with ZINB had a
more acceptablé value. TheNB modelwith predictor set D also showed signgpoédictor

overfitting due to highpredictedvalues that were not representativ@b$erved sign data

Based on the final beft model for camera observation count data (Set C ZINB) the
distribution of feral pigs on Maui f@pringwas most strongly driven by the anmbwf rainfall
and vegetatio height. These predictors were found to be the most significant variables out of the
eight predictors used in the model fitting process. Rainfall had a significant negative model
coefficient, indicating a decrease in the relatbundance of feral pigstivincreasing amounts
of rainfall (Fig 3.4). Vegetation height had a significant positive model coefficient, indicating an
increase in the relative abundance of feral pigs with increasing vegetation height. Vegetation
height was also found to be a sigicéint predictor for theero componerf the zereinflated
model. Vegetation height had a significant negative coefficient fareteecomponenndicating

that with increasing vegetation height the probability of false zelee®ases (Fig.4).
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Table3.1. A subsample dthe larger predictor variable set including the Hegiredictor sets
for springandfall recorded sign and camecaptured observations

Predictors
Predictor Set Count component Zero component
A native cover*vegetation density NA
B vegetation height, elevation vegetation height
C annualrainfall, vegetation height vegetation height
D vegetation density, distance to forest vegetation height

Note: Thezero componerterms for predictor sets thaad them were excluded from
GLMs and instead only thebunt componerterms were used due to the inability to separately
modelthe countandzero processassing GLMs.
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Table3.2. Results of bedfit models for camera obseatiorns and recorded sign data
breakdown of predictor set configurations can be found in Table 2.1

Data Distribution Predictor Set AIC n ! .

CAM ZINB B 196 0 1
CAM NB D 196 0 0.77
CAM NB B 198 2 0.89
CAM ZINB D 199 3 0.83
CAM ZINB C 203 T* 1.08
CAM NB A 214 18 0.98
CAM ZINB A 216 20 1.02
CAM NB C 218 22 0.74
CAM ZIP B 659 463 8.3
CAM ZIP C 830 634 14.9
CAM Poisson B 866 670 28
CAM ZIP A 1197 1001 6.7
CAM Poisson C 1353 1157 62
CAM ZIP D 1552 1356 51.5
CAM Poisson D 1676 1480 75
CAM Poisson A 1751 1555 71.3
SIGN NB D 173 0 0.9
SIGN ZINB B* 174 1* 1.03
SIGN ZINB D 175 2 1.07
SIGN ZINB C 187 14 1.15
SIGN NB B 187 14 0.84
SIGN ZINB A 192 19 1.1
SIGN NB A 195 22 1.3
SIGN ZIP B 196 23 1.7
SIGN NB C 202 29 0.94
SIGN ZIP D 236 63 3.3
SIGN ZIP C 256 83 2.7
SIGN Poisson D 256 83 5.7
SIGN ZIP A 262 89 2.1
SIGN Poisson B 283 110 6.03
SIGN Poisson A 353 180 9.1
SIGN Poisson C 396 223 13.4

Note:ZINB = zercinflated negative binomial distribution, ZIPzercinflated Poisson
distribution, NB = generalized linear moq&LM) negative binomial distribution, Poisson =
generalized linear modéGLM) Poisson disthution * indicate besfit models chosen for each
dataset
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Fig. 3.4. Response curves of predictariables used in the befstmodel using mean counts of
cameracaptured observations fepringdistribution of feral pigs on Maui. The top plots
representhe countomponentf the zereinflated model and predictor significance and
correlation to prdicted counts. The bottemost plot is a representation of thero component
of the zereinflated model representing the probability of false zeroes witle@song vegetation
height. Estimates, standard errors (SE), and thalyes for each predictor nables used in the
bestfit model are displayed in the legend.
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Fall 2018 Modet

Generally fall models fitted with negative binomial distribution perfodrgetter than
those fitted to Poisson distribution. Zardlated models fitted with camera data as the response
variable performed better than those fitted to GLMs. However, GLMs fitted with estsign
as the response variable performed better thamizBated models. Most of the zeroflated
models using recorded sign as the response variable resulted in fitting errorcurthe
componenbf the zereinflated model This indicatedhatsign dataobserved durindall was not

zerainflated andhe count componerdid not need to be partitioned frarero component

Bestfit models forfall camera and recorded sign data w&ieB model with predictor
set D andhe NB model with predictaetA respectivelyTable 3.3) AIC andi values for
ZINB and NB cameramodels using predictor set Deve near synonymouklowever including
an additional predictor (vegetation height) for #eeo componenaf the ZINB model explaied
additional vaiation reaulting in a morerobust model outpuBoth NB modek with predictor set
B and D werenot chosen as the bdgtmodel forfall recorded sign datthoughthey had lower
AIC values than the NB model with set Fhese modelshowed signsf predictoroveriftting
due to near synonymuisdistribution outputs as th@edictors and artificially low {values The
NB model with predictor se& was therefore chosen dueit®acceptable AIC and values and

realisticmodel outputs

Based on the be$it modelfor camera data fdall (ZINB set D the distribution of fera
pigs forfall was most strongly driven by vegetation density and the distance to(feiges2.5)
Both vegetation density and distance to forest had a significant negative model coefficient
indicating a decrease in the relative abundance of feraiygilysncreasing vegetation density

and the distance to forg$tig 3.5) Vegetation height had an insignificant negative model
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coefficient for thezero componertf the zereinflated model but was still included in the beéit

model as AIC and dispersiamdicateda worsefit modelwithout it.

Table3.3. Results of bedfit models forfall camera observations and recorded .sfgn
breakdown of predictor set configurations can be founichbile 2.1

Data Distribution Predictor Set AIC n ! .

CAM NB D 240 0 1.24
CAM ZINB D 241* 1* 1.24
CAM NB B 244 4 1.24
CAM NB C 246 6 0.71
CAM ZINB A 247 7 0.9
CAM ZINB B 248 8 0.93
CAM ZINB C 249 9 0.83
CAM ZIP D 989 749 7.8
CAM ZIP B 1027 787 8.02
CAM ZIP A 1034 794 6.76
CAM ZIP C 1050 810 7.18
CAM Poisson D 1131 891 49.4
CAM Poisson B 1230 990 50.7
CAM Poisson A 1371 1131 54.1
CAM Poisson C 1486 1246 52.8
CAM NB A NA NA NA
SIGN NB D 206 0 1.2
SIGN NB B 221 15 1.04
SIGN NB* A* 222* 16 1.03
SIGN ZINB A 224 18 1.07
SIGN NB C 227 21 0.88
SIGN Poison D 240 34 3.92
SIGN Poisson B 311 105 6.32
SIGN ZIP A 325 119 5.14
SIGN Poisson A 327 121 6.9
SIGN Poisson C 362 156 7.9
SIGN ZINB B NA NA NA
SIGN ZINB C NA NA NA
SIGN ZINB D NA NA NA
SIGN ZIP B NA NA NA
SIGN ZIP C NA NA NA
SIGN ZIP D NA NA NA

Note:ZINB = zercinflated negative binomial distribution, ZIP = zerdlated Poisson
distribution, NB = generalized linear model (GLM) negative binomtistribution, Poisson =
generalized linear model (GLM) Poisson distributibmdicate besfit models chosen for each
dataset
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Fig. 3.5. Response curves of predictor variables used in thefibesbdel using mean counts of
cameracaptured observatiorier fall distribution of feral pigs on Maui. Temost plots

represent the cousbmponentf the zeo-inflated model and predictor variable significance and
correlation with predicted counfShe bottoramost plot is a representation of the zero
component bthe zereinflated model representing an insignificant relationship between the
probability of fake zeroes and increasing vegetation helgtimates, standard errors (SE), and
the pvalues for each predictor variables used in the-fitastodel are diplayed in the legend.
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Seasoal distribution

Fig 3.6, 3.7, and 3.®resent the distribution déral pigs and their seasonal variation as
predicted by ZINBand GLMmodels Distribution maps for recorded sign, camera detections,
and astandardized additive combined model are incluatiquantitativespatial analyses were
only performed on distribidn maps generated from camera observat{®ig3.7). Dueto
variability in the longevity of observable siggistribution maps generated from recorded sign
(Fig. 3.6) and combined additive models (F8) were excluded from the quantitative spatial
andysis. Spring distribution mapshow feral pigs to be most abundant in bothntireed alien
forests of Kula ad highly abundant throughout the northern and eastern slopteseatkal
(Fig. 3.6, 3.7, & 3.9. Pigs weranostlyabsent from thdrier high elevations oHaleakaland
extensive areas of fallow agricultuwEEast and West Mauspring maps show pigt be most
abundant irdensemid-elevationwet and mesidorests of East ahWest Mau Considerable
abundances of pigs also occur in the lower elevation dry forests on the western skqsts of
Maui. Spring distribution of feral pigs seemed to be highlystrained to forested areand an
analysis of variance (ANOVA) indicatesignificant shift outside of these land cover types
duringfall. Fall maps show a shift in pig distribution to higher elevationdagakal
dominated by dry and mesic shrublgfd. 3.9). Pig abundance seexito be less constrained
by forested coveand moreconstrained by the distance to forastindicated during model
developmentANOVA revealed significant shifts in pig abundance froative wet and mesic
foress and alien forestsito more open native mesic shrubldretweerspringandfall (Fig.

3.9). Overall distributiorduringfall for models generated from camera dgtaearto be more

highly constrained tdistincthabitattypes tlanspring(Fig. 3.8)
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Fig. 3.6. Feral pig distribution maps generated from thefligabdels for spring (left) and fall
(right) using recorded sign abundance data. Maps were created using all availabledand
without excluding existingingulate proof areas (top) and exéhglungulate proof areas
(bottom).
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